Partial Reprogramming Rejuvenates Human Cells by 30 Years

Exposing fibroblasts to the Yamanaka factors for exactly 13 days has yielded substantial results.


Someone physically turns back a clockSomeone physically turns back a clock

Researchers from the Reik lab at the Babraham Institute have used the four Yamanaka reprogramming factors (OSKM) in order to epigenetically rejuvenate cells by 30 years, according to one epigenetic clock.

Reprogramming just beyond the threshold

Previous experiments have shown that while exposing cells to the Yamanaka factors rejuvenates them, it induces pluripotency to turn them into stem cells, thus causing them to lose their cellular identities (and thus function). Attempting to expose cells to these factors just long enough to achieve rejuvenation while allowing them to retain their identities has been a long-standing problem.

The researchers of this study used an approach that exposed cells to enough reprogramming factors to push them beyond the limit at which they were considered somatic rather than stem cells – but only just beyond. The fibroblasts that were reprogrammed in this way retained enough of their epigenetic cellular memories to return to being fibroblasts once again. The researchers refer to this novel method as maturation phase transient reprogramming (MPTR).

A very strong upside with a few downsides

MPTR had substantial positive results. According to Horvath’s 2013 multi-tissue clock, cells that were just under 60 years old became epigenetically equivalent to cells that were approximately 25 years old after 13 days of reprogramming, and the Horvath 2018 skin and blood clock showed that cells that were approximately 40 years old were also epigenetically returned to those of a 25-year-old. The transcriptome, the collection of proteins produced by genes, was also substantially rejuvenated.

There are, of course, quite a few caveats. The most important, of course, is while this experiment was performed on human donor cells, it could not be performed on a human volunteer; therefore, systemic factors that are known to influence the epigenome, such as those found in old blood, did not apply.

Exposing these cells to the OSKM factors was performed with a doxycycline-activated lentiviral package. While this method cannot be safely and effectively used inside a human being, it did allow the time of exposure to be carefully controlled, and such careful control is necessary; 10 days of exposure did not epigenetically rejuvenate cells as well as 13 days of exposure, but the researchers showed that too much exposure (15 and 17 days) led to cellular stresses that aged the epigenome once again. This study had only a few donors, and results after 13 days varied greatly by person.

MPTR did not positively affect the aging hallmark of telomere attrition. When cells were allowed to be fully reprogrammed into stem cells, their telomeres began to extend; however, this partial reprogramming led to moderate telomere shortening even as it rejuvenated the cells’ epigenomes.

Additionally, MPTR did not work on every cell, and these results were obtained after screening procedures that divided cells into failed and successful reprogramming groups. However, even the ‘failed’ group achieved partial successes in many key metrics of cellular aging and health.


While this experiment has shown that it is possible to epigenetically reprogram viable human cells under laboratory conditions, applying such an approach in the clinic would require considerable development of biotechnological fundamentals in order to give each of an individual patient’s cells the exact amount of OSKM it needs to be successfully rejuvenated and no more. This technology is not yet on the horizon.

However, it is feasible that such an approach could be used for the development of cell cultures that can be re-introduced back into an older person. This experiment used fibroblasts, which form collagen, so it is reasonable to imagine a world in which such reprogrammed cells are developed as a therapy against wrinkles and other effects of the aging extracellular matrix. This approach may one day be used to create viable, rejuvenated populations of muscle (incluluding cardiac muscle) and brain cells, and such freshly reprogrammed near-somatic cells may ultimately be the best option in many clinical applications.

Whatever approach proves to be more effective, we look forward to a day in which our own cells can be epigenetically reprogrammed into youthfulness and introduced back into our bodies in order to stave off multiple hallmarks of aging, thus improving our longevity and buying us critical time – time in which further therapies against aging can be developed.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Creating a Noise Clock to Measure Biological Age

Publishing in Aging, the Conboy research lab has outlined the problems with existing machine learning-based clocks and created a new...

EARD2023: Using NFTs to Support Video Gaming for Good

In this talk, Lifespan.io President Keith Comito describes use cases for "Proof of Philanthropy" (PoP) dynamic NFTs - a new...

Senolytics as a Potential Back Pain Treatment

In a recent paper, researchers from McGill University in Canada have investigated how a combination of two senolytics, RG-7112 and...

A Potential Exercise Mimetic to Restore Youthful Memory

Researchers have identified a platelet-derived factor that improves cognition in mice and published their findings in Nature Communications. Finding the...

Related Organizations

About the author
Josh Conway

Josh Conway

Josh is a professional editor and is responsible for editing our articles before they become available to the public as well as moderating our Discord server. He is also a programmer, long-time supporter of anti-aging medicine, and avid player of the strange game called β€œreal life.” Living in the center of the northern prairie, Josh enjoys long bike rides before the blizzards hit.
  1. Rasmus Rasch
    January 22, 2021

    This is so exiting!

    • Rasmus Rasch
      January 22, 2021


  2. Pieter Cloete
    February 2, 2021

    Waiting many years for news like this. Hoping that it will be available in the next few years and not only for the rich

    • Jake Jones
      April 3, 2021

      How wonderful. You know over here in Vancouver Island we have a lot of old people. Perhaps a law could be passed so that people could volunteer to be test subjects? I’m no scientist and am only 24 but I considering promoting this science to be of upmost important to humanity.

  3. Ksi
    April 2, 2021

    This is very exciting! You mention in your article that the exposure of the OSKM factors was done using a doxycycline-activated lentiviral package, but that it cannot be used safely and effectively in humans. I tried to find more details about why this is actually the case but couldn’t find any information about this in the article. Could you maybe explain why it is not safe for humans or point me to the right resources that support this claim and what alternatives there are that would be safe for use in humans? Thanks in advance!

    • Josh Conway
      April 2, 2021

      Simply put, the researchers used a genetic engineering “reprogramming cassette” on these cells that causes them to react to the presence of doxycycline. This sort of genetic engineering is fine for human cell experiments but has not been developed for use in actual people and likely never will be, due to factors such as dosing, side effects, and off-target effects between various tissues. Applying precise OSKM to the inside of a living person is its own, very difficult, problem, and I personally look forward to the day when an approach to do it reaches clinical trials.

      • Exo
        April 5, 2021

        What do you think, can it be possible with ERA from Turn.Bio as transient gene therapy? As I understood, it is doing the reprogramming without doxycycline.

        • Josh Conway
          April 5, 2021

          This sort of thing is one of Turn.bio’s goals; as with all research and development projects, we hope that its approach works but accept that it might not.

Write a comment:


Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.