AgeMeter — Are You Getting Any Younger?
Answering The Need for Improved Functional Age Testing
As laboratories around the world work towards translating experimental anti-aging findings to human treatments, a self administered functional age test to validate interventions that aim to slow or reverse the aging process is greatly needed.
Our goal is to develop a low-cost, modular touch screen device for integrating multiple cognitive & biometric assessment technologies. This can be used to gather, analyze, and compare data in aging research scientific studies, and thereby increase the pace of longevity research.

Why Is This Needed? |
The AgeMeterTM device will measure functional biomarkers of participants, estimating the age at which a person physically functions, enabling researchers to validate measurements from genetic and biochemical aging interventions and reliably compare results across subjects, studies and approaches.
Many laboratories have published results indicating the reversal or delay of various biomarkers of aging in model organisms and human cells, including cellular biomarkers such as telomere length, epigenome methylation status, expression of proteins specific to senescent cells and others, as well as morphological and functional tests, such as appearance, gait and balance, memory tests, etc. Thus far, however, there has been no fully integrated approach that can easily collect a variety of different data points from human participants, reliably correlating the output to functional age and comparing this against chronological age.
Being able to easily evaluate the effectiveness of a potential aging treatment in this way will allow longevity research to proceed at a faster rate, because meaningful data in regards to lifespan effect can be gathered in the middle of a study, not just at the end.
For this reason some of the world’s top longevity researchers have shown their support specifically for our project, as evinced by their following quotes:
![]() |
Harvard Scientists Dr. David Sinclair and Dr. George Church are two of the world’s most famous and honored researchers in the field, and they understand well the need for reliable biomarkers of aging. As a glimpse of their exciting work, Dr. Sinclair’s lab recently caused muscle tissue of 60 year old equivalent mice to resemble 20 years old after one week of injections of the molecule NMN, and here is a video of Dr. Church describing a gene altering technique accomplishing age reversal in a sample of his own cells. |
![]() |
Dr. Aubrey de Grey, noted longevity advocate and Chief Science Officer of the SENS Research Foundation also understands that reliable physiological biomarkers for aging will be an important part of assessing potential anti-aging treatments. SENS has done pioneering work in classifying the types of damage that accrue in our bodies with age, some of which you will be familiar with if you have supported previous campaigns on Lifespan.io. |
![]() |
Also needed is the ability to reliably correlate the functional age, or phenotype, of participants with their genotype.
This would greatly facilitate the search for genomic variations that may point the way towards uncovering the fundamental differences in rates of aging among different individuals. Toward that end, Dr. George Church and colleagues have been the initiators of the Personal Genome Project, whose goal is to obtain quality whole genome sequences of up to one thousand volunteers that would then be made publicly available to researchers. They are keenly interested in having such an easily deployed functional assay made available for such research. |
The AgeMeterTM will be a modernized successor to the H-SCAN functional age test that was originally developed in 1990 to assess physical biomarkers of aging. Building upon this work, our new AgeMeter device will test the following functional biomarkers, each accompanied by a guided demonstration video enabling users to complete tests without staff supervision:
1. Auditory reaction time (Fozard et al. 1994, Wolkorte et al. 2014) 2. Highest audible pitch 3. Vibrotactile sensitivity (sense of touch) 4. Visual reaction time (Woods et al. 2015) 5. Muscle movement time (Spirduso et al. 1975, Spirduso 1980, Ebaid et al. 2017) 6. Lung: forced vital capacity (Lee et al. 2017) 7. Lung: forced expiratory volume, 1 sec (Anstey et al. 2005, Lee et al. 2017) 8. Decision reaction time (Spirduso et al. 1975, Anstey et al. 2005) 9. Decision movement time (Spirduso et al. 1975) 10. Memory 11. Alternate button tapping (muscle coordination) 12. Visual perception (Anstey et al. 2005, Lockhart and Shi 2010) |
General references: Hochchild 1989, Hochchild 1989, Klatz 2003, Butler et al. 2004 |
In the original device these parameters were then statistically correlated with the ages of 2,462 subjects, and based on this accumulated data new users received a report that estimated their functional vs. chronological age:
![]() |
![]() |
|
Screen capture of the original H-SCAN Spirometry report, providing volume-flow and volume-time data for three exhalations from a participant. | Screen capture of H-SCAN test report generated by the original device, showing a participant’s scores and percentiles based on a 2,462 person norm group. |
The first iteration of the AgeMeterTM will be an updated version of this original H-SCAN functional age test, utilizing a touch screen tablet and modernized software. We also plan to research additional functional biomarkers of aging for use in future versions.

We will then create appropriate user interface software for each test, along with software to manage the collection of test result data. The initial breakdown of development costs will be as follows:
![]() |
Prototype Hardware: 20% To obtain and configure tablet computer, and peripheral test devices such as a spirometer to measure lung air capacity. User Interface: 30% Programming of the tests themselves, and instructions interface for test takers. Initial participant testing: 35% Handling the logistics of sampling initial set of ~2500 users of various ages and backgrounds. Software Functions and Database: 15% Programming the collection and storage of data in a cloud database and associated service costs. |

1. Prepare detailed specifications and overall design of the device. The categories of these specifications include the Tablet, Biometric Testing Software, User Interface Software, Peripheral Interface Software, Database Development, Cloud Software Development for data aggregation and basic data visualizations, and Video Test Assistant Software to instruct users on proper testing. [Estimated delivery: 1 month after campaign completion]2. Build a functional prototype AgeMeter device for measuring aging biomarkers based on the above specifications. [Estimated delivery: 3 months after campaign completion]3. Build multiple AgeMeter units, based on the performance of our initial prototype, for use by researchers to create the initial database of aging base line values. [Estimated delivery: 6 months after campaign completion]4. Recruit researchers to test approximately 2,500 human participants in order to develop statistical models and functional age calculation algorithms, based on the results obtained for various ages, genders, education levels, ethnicities, etc. There will also be an opt-out process for participants to anonymously store their data in a cloud-based server so that the database of test values will automatically grow as new values are uploaded. [Estimated delivery: 12 months after campaign completion] |
Note: If you would like to be kept informed about opportunities to participate in this collection of our initial data set, please subscribe to the following list, and we will let you know of research locations and conferences where the AgeMeter will be collecting data: |
The fulfillment of the above steps will culminate in a functional AgeMeter device suitable for aging research use, which will allow a test to be compared against baseline averages for analysis.

User Accounts and Personal Data History – The Quantified Self |
![]() ![]() |
|||
Additional Biomarker Development For example we want to add computer vision analysis to track ability to hold an object steady within a target area and move between various targets fluidly, and measure how this ability alters with age. Another test we’d like to add is fingertip pulse oximeter measurements to detect blood oxygenation, both at baseline and in response to mental and physical exertion. Most ambitiously we also want to integrate Functional Near-Infrared Spectroscopy (fNIRS) (for example McKendrick R, Parasuraman R and Ayaz H (2015), Front. Syst. Neurosci. 9:27) into our data gathering, as a measure of blood flow and oxygenation in the brain. Think of this as a safe and more portable fMRI that bounces a frequency of near infrared light up to approximately 4 centimeters into your brain! The addition of more biomarkers such as these into future versions of the AgeMeter will make the entire suite of tests even more helpful to researchers, and we hope you’ll help us make their inclusion a reality. |
![]() ![]() ![]() |

Founder, Centers for Age Control ![]() |
||
AgeMeter Engineer, Software Architect ![]() |
||
AgeMeter Consultant, Project Manager for Personal Genome Project ![]() |
![]() |












Note: this reward is only available in the United States, and only in states other than New York. Please see the Veritas website for further information. |


Please help us make the AgeMeter Biomarker Scan a reality, and help hasten the progress of longevity research. |
Fighting Aging and Hurricane Harvey — Campaign Extension and Matching Funds
Hello friends and supporters! We are pleased to announce that our campaign has been granted a 2 week extension, partly because our project leader Elliot Small had been called in by the Federal Emergency Management Agency (FEMA) to help with the disaster relief effort for Hurricane Harvey.
We are also happy to announce the support of two initiatives for matching donations to this campaign. The first is an anonymous donor to match the next $1,000 donated to the campaign, making your contribution count double.
The community at LongeCity has also decided to support the campaign with a matching fundraiser to get an AgeMeter for use in their affiliate labs!
The AgeMeter is at the Consumer Electronics Show
The AgeMeter has been selected as an exhibit at the Consumer Electronics Show (CES) at the Eureka Park new technology area at the Sands Expo in Las Vegas, Nevada on Jan 8-11. The AgeMeter is a functional aging biomarker system that can be used to monitor how someone is aging, and it was successfully funded on Lifespan.io in 2017.
If you happen to be at the CES show, you can check out the AgeMeter in action at booth number 51580 and meet the team behind its creation. If you are interested in learning more about the AgeMeter, you can do so on its official website. The AgeMeter is also featured on page 54 of Innovation and Tech Today Magazine, which is a CES Media Partner.
Agemeter® can be repurposed to help with Covid-19.*
This Harvard Medical School link, Covid-19 Basics, has Covid-19 factors updated regularly: confusion, shortness of breath, muscle weakness, fever, body ache, dry cough, fatigue, chills, headache, sore throat, loss of appetite, loss of smell and taste, tingling or numbness in the hands and feet, dizziness, delirium, seizures, stroke, nausea, vomiting, diarrhea, and abdominal pain or discomfort.
This NIH link, Silent hypoxia, explains how some people appear to be asymptomatic for Covid-19 while having dangerously low blood oxygen. This link, What is Hypoxemia?, explains how some compensate with a potentially unhealthy faster heart rate.
This Journal Of The Neurological Sciences link, Neurological manifestations and COVID-19, examines presymptomatic, post-hospitalization, and permanent Covid-19 induced short term memory loss, muscle injury, brain injury, and other damage.
Agemeter Tests as Covid-19 Risk Factors, Covid-19 Indicators, or Both*
- Auditory Reaction Time: New Cognitive Decline suggests New Confusion, which is a Covid-19 Indicator.
- Highest Audible Pitch: New Decline suggests New High Frequency Hearing Loss, which is a Covid-19 Indicator.
- Decision Reaction Time: New Cognitive Decline suggests New Confusion, which is a Covid-19 Indicator.
- Decision Movement Time: New Cognitive Decline suggests New Confusion, which is a Covid-19 Indicator.
- Lung Function Forced Vital Capacity (FVC): Low Level is a Covid-19 Risk Factor. New Decline is a Covid-19 Indicator.
- Lung Function Forced Expiratory Volume (FEV-1): Low Level is a Covid-19 Risk Factor. New Decline is a Covid-19 Indicator.
- Muscle Speed/Coordination: New Physical/Cognitive Decline suggests New Confusion and/or Muscle Weakness, Covid-19 Indicators.
- Visual Reaction Time: New Cognitive Decline suggests New Confusion, which is a Covid-19 Indicator.
- Visual Movement Time: New Cognitive Decline suggests New Confusion, which is a Covid-19 Indicator.
- Blood Oxygen Saturation: New Decline is a Covid-19 Indicator.
- Estimated Functional Age: Advanced or Premature Aging is a Covid-19 Risk Factor.
- Tests below are not included in age calculation:
- Heart Rate: New Increase is a Covid-19 Indicator.
- Body Mass Index (BMI): Obesity is a Covid-19 Risk Factor.
- Relative Fat Mass (RFM): Obesity is a Covid-19 Risk Factor.
Of course, there is also the latest status of the Agemeter as a functional age test:
There are AgeMeters in health care practices and research institutions (including Harvard Medical School) in 12 nations on 4 continents to estimate functional age to aid the investigation of therapies that might slow or reverse aging.
The AgeMeter® database continually updates and grows using globally collected anonymous data.
The AgeMeter® value increases as the database grows, enhancing the precision of test results.
Thereby, the AgeMeter® advances aging reversal research worldwide as a perpetually expanding global aging study.
The AgeMeter® can be foundational for age research with a database approach that can be customized.
A Consumer App version will provide testing of hardware independent biomarkers and also refer users to affiliated AgeMeter® health care and fitness providers for comprehensive services. Centers For Age Control, Inc. intends to introduce this version in time for Christmas and CES 2021.
• AgeMeter® measures a growing number of physiological biomarkers that decline with age.
* Disclaimer: The AgeMeter tests are not a medical device and do not diagnose, treat, or cure Covid-19 infection or any disease.
Hi, cool project. However, I wonder if these functional parameters are sufficient to estimate a person’s biological age? Are molecular / cellular / tissue biomarkers (mitochondrial health, vascular&skin elasticity etc.) negligible?
Hi; thanks for the question! We believe the functional parameters are sufficient to provide an estimate of a person’s biological age, and many of these tests have been in use for nearly 25 years (see citations above). At the same time, I would not discount cellular / molecular biomarkers, but rather view it as complimentary at the macro and micro scale. Our test is at the macro scale, and an advantage is it’s non-invasive, so no blood draw or tissue sampling and the small risks associated with it. Micro level tests (blood work, cellular, molecular) are informative, but you will also need macro level tests to see how certain aspect of your body’s system as a whole is working.
I’m wondering why this project has any focus on hardware? As far as I can tell (corrections welcome), the hardware component is simply a touchscreen tablet. Why isn’t the focus just on writing a cross-platform app that would work on the majority of touchscreens (i.e. iPads and Android devices), or indeed, full Windows computer touchscreen devices as well?
That’s a good question. We have the project split into a dual focus: hardware and cross platform. One of the reasons we have some focus on external hardware is for parameters that can not be measured by the sensor on a tablet, such as lung capacity. The software platform is being built on HTML5 and Javascript to be as portable as possible for a non-professional version, and portions that don’t require much processing power. The external hardware sensors are being integrated for the professional version, which is planned for Windows. We’re trying to plan with some extra capabilities in mind, such as computer vision motion target tracking. Hopefully, this answers your question.
Dedicated hardware makes sense if it’s going to included specialized sensors. I had the impression that it was all software and data entry. Thanks.