Help us: Donate
Follow us on:



A Biomarker Based on Senescent Cell Secretions

Using a meterUsing a meter

Researchers have published a new study suggesting that some of the inflammatory signals secreted by senescent cells could be used as a biomarker to measure aging and health.

What are senescent cells?

As you age, increasing numbers of your cells enter into a state known as senescence. Senescent cells do not divide or support the tissues of which they are part; instead, they emit a range of harmful chemical signals known as the senescence-associated secretory phenotype, or SASP. The SASP contains a complex cocktail of factors including cytokines, chemokines, proteins, growth factors, and more.

This secreted SASP is what makes senescent cells such a problem, as it not only contributes to the chronic systemic inflammation known as inflammaging, it can also encourage nearby healthy cells to become senescent as well. This means that a relatively small number of senescent cells in tissue can have a very large impact on the health and function of that tissue.

The presence of senescent cells and their SASP has been implicated in a myriad of age-related diseases and conditions; this is why researchers are currently developing senolytics, therapies that can remove them from the body.

Using the SASP as a biomarker of aging

The researchers of a new study make the case for collectively using certain factors in the secreted SASP to form a biomarker of aging and health [1]. Within the complex cocktail of secreted proteins and molecules that make up the SASP, the researchers identified a total of seven factors that they believe give a reliable indication of biological age and relative health.

These factors are also easy to test given that they can be sampled via a simple blood draw and then fed into diagnostic testing equipment. This is critical because, in order to be clinically useful, biomarkers should be both cost-effective and accurate.

Produced by senescent cells, the senescence-associated secretory phenotype (SASP) is a potential driver of age-related dysfunction. We tested whether circulating concentrations of SASP proteins reflect age and medical risk in humans. We first screened senescent endothelial cells, fibroblasts, preadipocytes, epithelial cells, and myoblasts to identify candidates for human profiling. We then tested associations between circulating SASP proteins and clinical data from individuals throughout the life span and older adults undergoing surgery for prevalent but distinct age-related diseases. A community-based sample of people aged 20–90 years (retrospective cross-sectional) was studied to test associations between circulating SASP factors and chronological age. A subset of this cohort aged 60–90 years and separate cohorts of older adults undergoing surgery for severe aortic stenosis (prospective longitudinal) or ovarian cancer (prospective case-control) were studied to assess relationships between circulating concentrations of SASP proteins and biological age (determined by the accumulation of age-related health deficits) and/or postsurgical outcomes. We showed that SASP proteins were positively associated with age, frailty, and adverse postsurgery outcomes. A panel of 7 SASP factors composed of growth differentiation factor 15 (GDF15), TNF receptor superfamily member 6 (FAS), osteopontin (OPN), TNF receptor 1 (TNFR1), ACTIVIN A, chemokine (C-C motif) ligand 3 (CCL3), and IL-15 predicted adverse events markedly better than a single SASP protein or age. Our findings suggest that the circulating SASP may serve as a clinically useful candidate biomarker of age-related health and a powerful tool for interventional human studies.


This SASP-based biomarker could potentially prove useful in quantifying the presence and level of senescent cells, along with their subsequent health risks in older people. It could also have potential in measuring the reduction of said senescent cells, following senolytics and other therapies aimed at removing them from the body.

Quite simply, the more high-quality biomarkers of aging we have available, the easier it will be to confirm the efficacy of a therapy aimed at addressing the reasons we age. Using the components of the SASP to measure biological age, health, and risk factors for age-related diseases seems like a promising avenue of research.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Benefits of Dasatinib and Quercetin Treatment in Monkeys

In one of the first studies of its kind, the popular senolytic combination, administered systematically for six months, produced several...

Linking Bile Duct Blockage and Cellular Senescence

Research published in Aging has shed new light on the relationship between certain liver diseases and cellular senescence. Clogged bile...

Rejuvenation Roundup May 2023

This year, May brought us a shower of research, interviews, and insights into the present and future of rejuvenation biotechnology....

Dietary Magnesium in Dementia Prevention

Researchers publishing in the European Journal of Nutrition looked into magnesium as a possible candidate for preventing dementia, focusing on...


[1] Schafer, M. J., Zhang, X., Kumar, A., Atkinson, E. J., Zhu, Y., Jachim, S., … & Kotajarvi, B. (2020). The senescence-associated secretome as an indicator of age and medical risk. JCI insight, 5(12).

About the author

Steve Hill

Steve serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 600 articles on the topic, interviewed over 100 of the leading researchers in the field, hosted livestream events focused on aging, as well as attending various medical industry conferences. His work has been featured in H+ magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Swiss Monthly, Keep me Prime, and New Economy Magazine. Steve is one of three recipients of the 2020 H+ Innovator Award and shares this honour with Mirko Ranieri – Google AR and Dinorah Delfin – Immortalists Magazine. The H+ Innovator Award looks into our community and acknowledges ideas and projects that encourage social change, achieve scientific accomplishments, technological advances, philosophical and intellectual visions, author unique narratives, build fascinating artistic ventures, and develop products that bridge gaps and help us to achieve transhumanist goals. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project.
No Comments
Write a comment:


Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.