Help us: Donate
Follow us on:
×

The Role of Mitochondrial Antioxidants in Longevity

The results were conclusive but don't lead to simple interventions.

NematodeNematode
 

A study published in Redox Biology has reported that the upregulation of thioredoxin, a fundamental part of mitochondrial defense against reactive oxygen species, is associated with longevity in mutant C. elegans worms.

Free radicals, revisited

The free radical theory of aging, which focuses on reactive oxygen species (ROS), is largely considered to be largely outdated and superseded by more comprehensive theories. However, free radicals are still known to have a strong effect, especially in simpler model organisms, and the relationship between ROS and mitochondrial dysfunction has been heavily researched [1].

One way in which researchers have slowed aging in model organisms also involves slowing their development in a “live slow, die old” fashion. Deliberately impairing mitochondrial function slows the growth of these organisms but also slows the rate at which they accumulate damage, thus leading to longer lifespans [2].

Interestingly, some mutations that increase ROS also increase longevity, as the increased ROS leads to an increased response against it, which more than makes up for the damage [3]. One of the responses in one of these mutants involves the upregulation of thioredoxin, a fundamental part of the mitochondrial defense against ROS [4].

Effects and lacks thereof

After winnowing down the candidates for gene expression, the researchers focused their efforts on two mutants, nuo-6 and isp-1, along with thioredoxin expressed in the mitochondria (trx-2) and its counterpart, thioredoxin reductase (trxr-2). The researchers also examined similar genes that are expressed by the nucleus, notably trx-1 and trxr-1.

Disrupting any of the trx family of genes, as expected, increases ROS in both mutants and wild-type worms. However, most of the lifespan effects are restricted only to the mutants in which these genes are upregulated. Knocking out the nuclear trx-1 significantly harmed all the worms under normal circumstances, but knocking out trx-2 and trxr-2 only significantly decreased lifespan in the mutant worms, showing that these mutants’ longevity largely relies on the upregulation of their mitochondrial thioredoxin genes.

However, while knocking out the trx-2 and trxr-2 genes had no significant lifespan effect in wild-type worms under any circumstances, and knocking out trxr-1 and trxr-2 actually increased lifespan in wild-type worms exposed to the herbicide paraquat, knocking out trx-1 and trxr-1 significantly decreased lifespan in mutants and wild-type worms exposed to excessive heat and salty water.

Conclusion

The biochemistry of free radicals is complicated and, at times, contradictory. This research recapitulates the known fact that some antioxidants, such as thioredoxin, are naturally increased to compensate for an increase in ROS.

The lack of effect of mitochondrial thioredoxin knockout in wild-type worms under normal circumstances has worrying implications for anyone intending to research it as a longevity drug. However, the research does elucidate situations in which this compound has a significant effect on lifespan.

It may make more sense, then, to conduct research into whether thioredoxin, and antioxidants more generally, are better suited to being situational interventions against specific stressors rather than broad-spectrum life extension drugs.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

CONNECT WITH US AND STAY INFORMED
Please connect with us on social media, like and share our content, and help us build grass-roots support for healthy life extension:
Lifespan.io YouTube
Lifespan.io Facebook
Lifespan.io Twitter
Lifespan.io Instagram
Lifespan.io Instagram
Lifespan.io Discord
Thank You!

Literature

[1] Shields, H. J., Traa, A., & Van Raamsdonk, J. M. (2021). Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Frontiers in Cell and Developmental Biology, 9, 181.

[2] Dillin, A., Hsu, A. L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A. G., … & Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science, 298(5602), 2398-2401.

[3] Senchuk, M. M., Dues, D. J., Schaar, C. E., Johnson, B. K., Madaj, Z. B., Bowman, M. J., … & Van Raamsdonk, J. M. (2018). Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genetics, 14(3), e1007268.

[4] Dues, D. J., Schaar, C. E., Johnson, B. K., Bowman, M. J., Winn, M. E., Senchuk, M. M., & Van Raamsdonk, J. M. (2017). Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radical Biology and Medicine, 108, 362-373.

About the author
Josh Conway

Josh Conway

Josh is a professional editor and is responsible for editing our articles before they become available to the public as well as moderating our Discord server. He is also a programmer, long-time supporter of anti-aging medicine, and avid player of the strange game called “real life.” Living in the center of the northern prairie, Josh enjoys long bike rides before the blizzards hit.
No Comments
Write a comment:

*

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.