Help us: Donate
Follow us on:
×

Menu

Back

What is Niacin? A Summary of Nicotinic Acid

We take a look at the common dietary supplement niacin.

 

Niacin is a common dietary supplement with a long research history and more than a few tricks up its sleeve. Recent human trials have shed new light on its possible role in addressing mitochondrial dysfunction and aging.

What is niacin?

Niacin is a form of water-soluble vitamin B3. In 1937, this vitamin was discovered in yeast and meat by American biochemist Conrad Elvehjem. It was found to cure pellagra, a disease that is caused by vitamin B3 deficiency and that causes horrible skin lesions, diarrhea, dementia, and even death. This compound is now commonly marketed as niacin and is the third of eight presently known B vitamins.

Niacin was originally called nicotinic acid because it can be created by the oxidation of nicotine with nitric acid. However, people know nicotine as the addictive chemical in tobacco, so the name niacin was adopted, which comes from the words NIcotinic ACid vitamIN.

Niacin in food

Foods rich in niacin include chicken, tuna, turkey, peanuts, coffee, kidney beans, pork, and bacon. Meats are generally the highest in niacin content by a large margin; however, this may not be practical for dietary reasons. Thankfully, niacin is readily and inexpensively available as a supplement.

Note that there are two versions of nicotinic acid available: a regular variety and a slow-release variety. The slow release version is sometimes called ‘delayed action’ or ‘persistent release’. Slow-release nicotinic acid is not recommended for regular supplementation, as it carries the risk of liver damage [1]. Only take slow-release nicotinic acid when directed to do so by a qualified physician, and only for the stated duration.

The recommended daily amount of niacin for adult males is 16 milligrams (mg) a day and for adult women who aren’t pregnant, 14 mg a day.

Of course, niacin supplements are also available for those struggling to get enough in their diet or are biohacking.

What’s the difference between regular niacin and “no-flush” niacin?

There are also some brands selling “no flush” niacin, this is inositol hexaniacinate (a different form of vitamin B3) and is not the same as the niacin discussed here and does not work in the same way. Inositol hexanicotinate does support energy metabolism and is used by the nervous system, however, no studies have shown it has any effect on cholesterol levels.

Potential niacin benefits

Niacin is essential for the normal function of the nervous system and the maintenance of healthy skin and mucous membranes. Niacin helps the body convert food (carbohydrates) into fuel (glucose), which the body uses to produce energy. A common sign of niacin deficiency is, therefore, fatigue. Niacin can also help reduce blood pressure.

As a precursor of nicotinamide adenine dinucleotide (NAD+), niacin can increase levels of NAD+ in cells. NAD+ is involved in the repair of DNA [2-3], and, recently, the mechanism of how NAD+ repairs DNA was discovered [4].

In metabolism, NAD+ is a coenzyme involved in redox reactions, helping to move electrons from one reaction to another. NAD is found in two forms in cells. NAD+ is an oxidizing agent; it accepts electrons from other molecules and becomes reduced. This reaction forms NADH, which is then used as a reducing agent to donate electrons. These electron transfer reactions are the primary function of NAD+ , but NAD+ is also involved in other cellular processes. It is associated with the sirtuins, which are closely linked to longevity in mammals.

Niacin and cholesterol

Niacin is able to increase levels of good high-density lipoprotein (HDL) cholesterol, which helps to remove the low-density lipoprotein (LDL) cholesterol, sometimes called bad cholesterol [5-7]. This has historically led to niacin being used to control blood pressure and cholesterol levels in patients at risk of heart disease, dyslipidaemia, hypercholesterolemia, or hyperlipidemia. It inhibits production of very-low-density lipoprotein (VLDL) in the liver and, consequently, its byproduct, LDL [8].

VLDL transports both triglycerides and cholesterol. Once in the circulation, VLDL is broken down, releasing triglycerides for energy use by cells or for storage in the adipose fat tissue. Once triglycerides are released from VLDL, its composition changes, and it changes into intermediate-density lipoprotein (IDL). Later, when the amount of cholesterol increases, IDL becomes LDL.

Niacin can raise HDL by as much as 30-35 percent. This effect is caused by a reduction of cholesterol transfer from HDL to VLDL and delayed clearance of HDL [9]. The drug also lowers total cholesterol, low-density lipoprotein cholesterol (LDL-C), triglycerides, and lipoprotein. While some studies dispute that niacin reduces the risk of stroke and heart attack, multiple clinical trials suggest that it does.

Niacin and atherosclerosis

The CLAS study, a two-part, randomized, placebo-controlled, angiographic trial, combined colestipol-niacin therapy in 162 subjects [10]. Two-year results (CLAS-I) showed a decreased progression of atherosclerosis and an increased regression. A subgroup of 103 subjects was treated for four years (CLAS-II). Changes in blood lipids, lipoprotein-cholesterol, and apolipoprotein were monitored, and, at four years, a significant number of subjects demonstrated non-progression (52% vs. 15% placebo-treated) and regression (18% vs. 6% placebo-treated) in native coronary artery lesions.

Significantly fewer drug-treated subjects developed new lesions in native coronary arteries (14% vs. 40% placebo-treated) and bypass grafts (16% vs. 38% placebo-treated). These results confirm the CLAS-I findings and indicate that regression can continue for at least four years.

Targeting patients with coronary disease and low HDL cholesterol, the HATS study looked at niacin plus simvastatin, antioxidant-vitamin therapy, a combination of these therapies, and a placebo [11]. The antioxidant therapy was composed of vitamin E, 1000 mg of vitamin C, 25 mg of natural beta-carotene, and 100 μg of selenium. Simvastatin plus niacin provided marked clinical and angiographically measurable benefits against coronary artery blockages compared to antioxidant-vitamin therapy and the placebo.

Potential concerns of niacin

One concern about niacin that is sometimes raised is a 2016 study that suggested that niacin increases blood glucose levels. Thus, it has been suggested that it may contribute to new-onset diabetes. A meta-analysis was made of 11 randomized trials to confirm whether or not a link exists between niacin therapy and new-onset diabetes [12].

The trials were found by a search of the Cochrane database and EMBASE between the years 1975-2014. Inclusion criteria consisted of randomized controlled trials on niacin and its cardiovascular effects on 50 or more non-diabetic participants. This was conducted as a 2-armed study with a total of 26,340 participants; of these, 13,121 were assigned to the niacin therapy group, and 13,219 were assigned to the control group.

Of the 26,340 total participants analyzed, 725 in the niacin group and 646 in the control group developed new-onset diabetes. The use of niacin was shown to be associated with a moderately increased risk of developing diabetes compared to a placebo. However, the cardiovascular benefits of niacin therapy may outweigh the risk of developing diabetes.

Niacin increased NAD+ in human trials

In 2020, a human trial showed that niacin increases NAD+ significantly [13]. Trial participants were administered a gradually escalating dose of niacin, starting at 250 mg a day and rising to 750-1000 mg a day over a 4-month period, and finally a 10-month follow-up treatment period. The participants were put into two groups: a group of individuals with mitochondrial myopathy and a group of healthy age-matched people consisting of two healthy people for each patient with mitochondrial myopathy. All participants in the trial were given the same escalating niacin regimen.

The researchers reported that niacin increased muscle NAD+ levels by 1.3-fold by the 4-month mark, and this increased to 2.3-fold after 10 months in the mitochondrial myopathy group. The healthy control group saw no such increase, which suggests  that NAD+ levels are highly regulated in skeletal muscle tissue and only increase when levels are below normal, as happens in mitochondrial myopathy. This may also be the case during aging, which also reduces efficient mitochondrial function.

Whole-blood NAD+ was also reported to have increased by 7.1-fold in the study group and 5.7 in the control group after 4 months compared to the participants’ baseline. There was a further increase to 8.2-fold compared to the baseline by the 10-month mark and confirms that niacin does reach the bloodstream in significant amounts and is not simply removed by the liver.

Niacin appears to improve body composition

The researchers also reported that niacin improved body composition, and participants saw a decrease in whole-body fat percentage in controls and increased muscle mass in both the control and study groups. After 10 months, participants saw increased muscle strength. They noted that hepatic fat was reduced by half and visceral fat by a quarter; both of these fat deposits are associated with an increased risk of metabolic syndrome.

The researchers also considered the previously mentioned risk of niacin increasing blood glucose levels. The study results showed that niacin did indeed increase fasting glucose levels in both study groups following 4 months of supplementation. However, glycosylated hemoglobin, which reflects long-term glucose levels, was not affected.

Niacin side effects 

A typical side effect of high-dose niacin is the “niacin flush” reaction, which can potentially cause a burning, tingling, and itching sensation on the skin. This flushing is harmless and typically subsides within 30 minutes to an hour. The flush reaction is normally the most intense after the first dose and normally diminishes with continued use of niacin as the body grows used to it. Its severity may also be reduced by starting at a low dose (50-100 mg), taking an aspirin or white willow extract beforehand, and drinking water.

As mentioned previously, slow-release/sustained release niacin carries the risk of liver damage so be careful when purchasing [1].

Disclaimer

This article is only a very brief summary, is not intended as an exhaustive guide, and is based on the interpretation of research data, which is speculative by nature. This article is not a substitute for consulting your physician about which supplements may or may not be right for you. We do not endorse supplement use or any product or supplement vendor, and all discussion here is for scientific interest.

HELP SPREAD THE WORD
Please connect with us on social media, like and share our content, and help us build grass-roots support for healthy life extension:
Lifespan.io YouTube
Lifespan.io Facebook
Lifespan.io Twitter
Lifespan.io Instagram
Lifespan.io Instagram
Lifespan.io Discord
Thank You!

Literature

[1] Rader, J. I., Calvert, R. J., & Hathcock, J. N. (1992). Hepatic toxicity of unmodified and time-release preparations of niacin. The American journal of medicine, 92(1), 77-81.

[2] Kennedy, D. O. (2016). B vitamins and the brain: Mechanisms, dose and efficacy—A review. Nutrients, 8(2), 68.

[3] Kirkland, J. B. (2012). Niacin requirements for genomic stability. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 733(1), 14-20.

[4] Li, J., Bonkowski, M. S., Moniot, S., Zhang, D., Hubbard, B. P., Ling, A. J., … & Aravind, L. (2017). A conserved NAD+ binding pocket that regulates protein-protein interactions during aging. Science, 355(6331), 1312-1317.

[5] Brown G, Albers JJ, Fisher LD, et al. Regression of coronary artery disease as a result of intensive lipid-lowering therapy in men with high levels of apolipoprotein B. N Engl J Med. 1990;323:1289–98.

[6] Kamanna VS, Kashyap ML. Mechanism of action of niacin on lipoprotein metabolism. Curr Atheroscler Rep. 2000;2:36–46.

[7] Cashin-Hemphill L, Mack WJ, Pogoda JM, et al. Beneficial effects of colestipol-niacin on coronary atherosclerosis. A 4-year follow-up. JAMA. 1990;264:3013–7.

[8] Grundy, S. M., Mok, H. Y. L., Zech, L., & Berman, M. (1981). Influence of nicotinic acid on metabolism of cholesterol and triglycerides in man. Journal of lipid research, 22(1), 24-36.

[9] Illingworth, D. R., Stein, E. A., Mitchel, Y. B., Dujovne, C. A., Frost, P. H., Knopp, R. H., … & Greguski, R. A. (1994). Comparative effects of lovastatin and niacin in primary hypercholesterolemia: a prospective trial. Archives of internal medicine, 154(14), 1586-1595.

[10] Cashin-Hemphill, L., Mack, W. J., Pogoda, J. M., Sanmarco, M. E., Azen, S. P., & Blankenhorn, D. H. (1990). Beneficial effects of colestipol-niacin on coronary atherosclerosis: a 4-year follow-up. Jama, 264(23), 3013-3017.

[11] Brown, B. G., Zhao, X. Q., Chait, A., Fisher, L. D., Cheung, M. C., Morse, J. S., … & Frohlich, J. (2001). Simvastatin and niacin, antioxidant vitamins, or the combination for the prevention of coronary disease. New England Journal of Medicine, 345(22), 1583-1592.

[12] Goldie, C., Taylor, A. J., Nguyen, P., McCoy, C., Zhao, X. Q., & Preiss, D. (2016). Niacin therapy and the risk of new-onset diabetes: a meta-analysis of randomised controlled trials. Heart, 102(3), 198-203.

[13] Pirinen, E., Auranen, M., Khan, N. A., Brilhante, V., Urho, N., Pessia, A., … & Haimilahti, K. (2020). Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metabolism.

CategoryNews, Supplements

Related Topics

About the author

Steve Hill

Steve serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 600 articles on the topic, interviewed over 100 of the leading researchers in the field, hosted livestream events focused on aging, as well as attending various medical industry conferences. His work has been featured in H+ magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Swiss Monthly, Keep me Prime, and New Economy Magazine. Steve is one of three recipients of the 2020 H+ Innovator Award and shares this honour with Mirko Ranieri – Google AR and Dinorah Delfin – Immortalists Magazine. The H+ Innovator Award looks into our community and acknowledges ideas and projects that encourage social change, achieve scientific accomplishments, technological advances, philosophical and intellectual visions, author unique narratives, build fascinating artistic ventures, and develop products that bridge gaps and help us to achieve transhumanist goals. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project.
  1. Nina McGowan
    October 7, 2020

    Niacin helps the body convert food (carbohydrates) into fuel (glucose), which the body uses to produce energy.

    What about Ketones?
    Im on a ketogenic diet for last decade. You describe ‘food’ as ‘carbohydrates’. What about fats and proteins?

  2. Norma M. Castillo
    May 3, 2021

    what is the complete reference for 13. In your article please?

    • Steve Hill
      May 3, 2021

      Pirinen, E., Auranen, M., Khan, N. A., Brilhante, V., Urho, N., Pessia, A., … & Haimilahti, K. (2020). Niacin cures systemic NAD+ deficiency and improves muscle performance in adult-onset mitochondrial myopathy. Cell Metabolism.

  3. Oliver Ward
    May 3, 2021

    Hey Steve, another excellent article, thank you. Question: I know there’s some concern around too much nicotinamide potentially inhibiting SIRT1, and some people believe this is also a risk from oral NR and/or NMN when it’s broken down during first pass metabolism.

    Does the same concern exist with nicotinic acid? i.e. is it broken down by first pass metabolism, and could it (hypothetically) inhibit SIRT1? Or does this problem not exist with NA?

    Regards,

    Oliver

    • Steve Hill
      May 4, 2021

      I have not seen data for niacin to do this, only nicotinamide.

  4. rmbech
    May 4, 2021

    I am wondering why the slow release form of Niacin is considered dangerous and potentially damaging to the liver while the immediate release form does not carry this risk? Especially if the active ingredient (Nicotinic Acid) is the same in both cases. Wouldn’t the extended release form be safer as it is not presenting the body with as much of the active ingredient at one time?

Write a comment:

*

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.

You have 3 free articles remaining this week. You can register for free to continue enjoying the best in rejuvenation biotechnology news. Already registered? Login here.