×

The Blog

Building a Future Free of Age-Related Disease

Healthy Food

“The Perfect Diet” May Increase Lifespan by 13 Years

Scientists from Norway have built a model that predicts the effect of various dietary changes on human lifespan [1].

Diet is obviously a major health factor, but quantifying its impact is not easy. Since it is all but impossible to conduct a controlled study of how a particular type of food affects health in the long run, scientists have to resort to population studies, which are plagued by the abundance of confounding factors. On the other hand, the sheer number of dietary population studies might offset their imperfections. When dozens or studies and meta-analyses point in one direction, we should probably pay attention.

Meta-meta-analysis

This new study uses numerous meta-analyses, plus data from the vast Global Burden of Disease (GBD) study completed in 2019, to estimate the impact of various dietary changes on human lifespan.

First, the researchers established a typical “Western diet”, based on the same population studies, and then built a model that estimates the effect of various changes to this diet that are started at the age of 20, 60, or 80. According to the model, if you are a 20-year-old woman, the increase in whole grain consumption from 50 grams (baseline Western diet) to 225 grams a day extends your life expectancy by two years. An increase in legume consumption from 0 to 200 grams a day results in an even more substantial 2.2-year extension, and boosting the consumption of nuts from 0 to just 25 grams a day gives you an additional 1.7 years of life; of course, extremely few people consume exactly zero legumes and nuts.

There are also gains to be made from decreasing the consumption of certain foods, including red meat and processed meat, which have been consistently reported to be harmful [2]. Under this model, reducing consumption from average Western levels (100 grams and 50 grams a day, respectively) to zero gives 1.6 additional years of life. On the other hand, increasing daily consumption of fish from 50 to 200 grams increases lifespan by 0.5 years. Large gains can also be achieved by cutting back on refined grains, sugary beverages, and eggs. Milk and white meat have little effect on lifespan.

Eating more fruits and vegetables is a good idea as well, but the gains are smaller, since the researchers calculated relatively high baseline amounts. Eating more fruit (400 grams instead of 200 grams a day) increases lifespan by 0.4 years, and more vegetables (400 grams instead of 250 grams) by 0.3 years. The results for men closely resemble those for women but are slightly more pronounced.

Overall, the researchers estimate that by following what they call “the optimized diet”, a 20-year-old woman can increase her life expectancy by 10.7 years, and a 20-year-old man can increase his by 13 years. If started at 60 years of age, the optimized diet supposedly increases lifespan by 8 and 8.8 years, respectively, and if started at 80, both sexes would benefit from a 3.4-year increase. The researchers also devised “the feasible diet”, which achieves considerable lifespan extension via less drastic changes.

Taken at face value, these results position healthy diet as the best geroprotective intervention available today. The researchers took an additional step and developed an online tool that helps calculate gains in lifespan you can achieve by making specific dietary changes. Here are the gains in lifespan for 20-year-old women (left) and men.

Dietary Lifespan Gains

Better late than never

The results look rosy, but they are based on population studies, a specific methodology, and assumptions that may or may not be correct. For instance, the researchers assume that “the time to full effect”, which represents the start of a dietary change until it stops adding years to lifespan, is 10 years. While this assumption is based on the available data, the authors admit they might be wrong.

On the other hand, the study sits well with previous research. Interestingly, scientists are slowly finding biological evidence that backs some (but not all) dietary populational studies. As an example, recently, a genetic mutational signature was found that firmly links both processed and unprocessed red meat to colorectal cancer [3] – something that population studies have been suggesting for a long time.

Another major takeaway from the study is that while it is better to start eating healthy as early as possible, it is also never too late, with gains in lifespan remaining very substantial even for 60-year-olds.

Conclusion

This study is probably the first ever to propose a model that calculates gains in lifespan from several dietary interventions, an intriguing undertaking that might become a basis for future research.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Fadnes, L. T., Økland, J. M., Haaland, Ø. A., & Johansson, K. A. (2022). Estimating impact of food choices on life expectancy: A modeling study. PLoS medicine19(2), e1003889.

[2] Pan, A., Sun, Q., Bernstein, A. M., Schulze, M. B., Manson, J. E., Stampfer, M. J., … & Hu, F. B. (2012). Red meat consumption and mortality: results from 2 prospective cohort studies. Archives of internal medicine172(7), 555-563.

[3] Gurjao, C., Zhong, R., Haruki, K., Li, Y. Y., Spurr, L. F., Lee-Six, H., … & Giannakis, M. (2021). Discovery and features of an alkylating signature in colorectal cancer. Cancer discovery11(10), 2446-2455.

Nematode

The Role of Mitochondrial Antioxidants in Longevity

A study published in Redox Biology has reported that the upregulation of thioredoxin, a fundamental part of mitochondrial defense against reactive oxygen species, is associated with longevity in mutant C. elegans worms.

Free radicals, revisited

The free radical theory of aging, which focuses on reactive oxygen species (ROS), is largely considered to be largely outdated and superseded by more comprehensive theories. However, free radicals are still known to have a strong effect, especially in simpler model organisms, and the relationship between ROS and mitochondrial dysfunction has been heavily researched [1].

One way in which researchers have slowed aging in model organisms also involves slowing their development in a “live slow, die old” fashion. Deliberately impairing mitochondrial function slows the growth of these organisms but also slows the rate at which they accumulate damage, thus leading to longer lifespans [2].

Interestingly, some mutations that increase ROS also increase longevity, as the increased ROS leads to an increased response against it, which more than makes up for the damage [3]. One of the responses in one of these mutants involves the upregulation of thioredoxin, a fundamental part of the mitochondrial defense against ROS [4].

Effects and lacks thereof

After winnowing down the candidates for gene expression, the researchers focused their efforts on two mutants, nuo-6 and isp-1, along with thioredoxin expressed in the mitochondria (trx-2) and its counterpart, thioredoxin reductase (trxr-2). The researchers also examined similar genes that are expressed by the nucleus, notably trx-1 and trxr-1.

Disrupting any of the trx family of genes, as expected, increases ROS in both mutants and wild-type worms. However, most of the lifespan effects are restricted only to the mutants in which these genes are upregulated. Knocking out the nuclear trx-1 significantly harmed all the worms under normal circumstances, but knocking out trx-2 and trxr-2 only significantly decreased lifespan in the mutant worms, showing that these mutants’ longevity largely relies on the upregulation of their mitochondrial thioredoxin genes.

However, while knocking out the trx-2 and trxr-2 genes had no significant lifespan effect in wild-type worms under any circumstances, and knocking out trxr-1 and trxr-2 actually increased lifespan in wild-type worms exposed to the herbicide paraquat, knocking out trx-1 and trxr-1 significantly decreased lifespan in mutants and wild-type worms exposed to excessive heat and salty water.

Conclusion

The biochemistry of free radicals is complicated and, at times, contradictory. This research recapitulates the known fact that some antioxidants, such as thioredoxin, are naturally increased to compensate for an increase in ROS.

The lack of effect of mitochondrial thioredoxin knockout in wild-type worms under normal circumstances has worrying implications for anyone intending to research it as a longevity drug. However, the research does elucidate situations in which this compound has a significant effect on lifespan.

It may make more sense, then, to conduct research into whether thioredoxin, and antioxidants more generally, are better suited to being situational interventions against specific stressors rather than broad-spectrum life extension drugs.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Shields, H. J., Traa, A., & Van Raamsdonk, J. M. (2021). Beneficial and detrimental effects of reactive oxygen species on lifespan: A comprehensive review of comparative and experimental studies. Frontiers in Cell and Developmental Biology, 9, 181.

[2] Dillin, A., Hsu, A. L., Arantes-Oliveira, N., Lehrer-Graiwer, J., Hsin, H., Fraser, A. G., … & Kenyon, C. (2002). Rates of behavior and aging specified by mitochondrial function during development. Science, 298(5602), 2398-2401.

[3] Senchuk, M. M., Dues, D. J., Schaar, C. E., Johnson, B. K., Madaj, Z. B., Bowman, M. J., … & Van Raamsdonk, J. M. (2018). Activation of DAF-16/FOXO by reactive oxygen species contributes to longevity in long-lived mitochondrial mutants in Caenorhabditis elegans. PLoS Genetics, 14(3), e1007268.

[4] Dues, D. J., Schaar, C. E., Johnson, B. K., Bowman, M. J., Winn, M. E., Senchuk, M. M., & Van Raamsdonk, J. M. (2017). Uncoupling of oxidative stress resistance and lifespan in long-lived isp-1 mitochondrial mutants in Caenorhabditis elegans. Free Radical Biology and Medicine, 108, 362-373.

Vittorio Sebastiano

Reprogramming Cells with Vittorio Sebastiano of Turn.bio

Vittorio Sebastiano is an Associate Professor (Research) of Obstetrics and Gynecology at Stanford University and one of the most prominent scientists in the emerging field of cellular reprogramming. He is also co-founder and Scientific Advisory Board Chairman of Turn Biotechnologies, a cellular rejuvenation company based on the research done in Sebastiano’s Stanford lab.

Turn recently closed a fundraising round that attracted support from two international pharmaceutical organizations, Daewoong Pharmaceutical and HanAll Biopharma, along with Astellas Venture Management, a venture capital group. We talked with Sebastiano about the status of cellular rejuvenation research and the intriguing path that his company is taking towards this goal.

Last time you gave an interview to Lifespan.io was three years ago almost to the day. What has happened to the reprogramming field since then, what advances have been made? 

We have seen very significant progress during the last two, three years. Back in 2019, many people still thought that this idea of transient cellular reprogramming, or partial reprogramming, was more science fiction than science. Today, mainstream science, researchers, companies around the world are trying to find the best way to rejuvenate cells.

Many labs have started working on these ideas since we published our work. I strongly believe that our proprietary approach, which we call ERA (Epigenetic Reprogramming of Aging), holds the greatest promise in regenerative medicine, because it’s a finely tuned and controlled way to reset the epigenetic landscape of cells to a more youthful, functional phenotype without impacting their identity, which is obviously a risk factor that’s associated with reprogramming.

Just to recap, in 2020, we were the first to demonstrate the applicability of this to human cells that were derived from elderly individuals. As important as animal studies are, in the end, you need to show that it works in human cells derived from aged tissues, and that’s exactly what we did. We were the first to demonstrate that in human cells, and we are also very hopeful to be the first to demonstrate that it works in patients. That’s our goal.

That begs the question, when will we see human trials?

Very soon, hopefully. We’re progressing very rapidly on a couple of indications in dermatology and immunotherapy. Soon, we’re going to move into at least Phase I clinical trials.

I always like to emphasize the fact that Turn as a company is not just about ERA. This is the foundational technology of Turn, but at the same time, since it relies on the delivery of mRNAs that are used to perform that resetting of the epigenetic landscape, we are also working heavily on the cargo (that is, the mRNAs), and on the delivery system. These three are the three pillars of Turn that are going to enable rapid clinical implementation of this technology for a variety of indications.

There has been great progress in terms of research on all three of those, but most importantly, there has been major progress recently in partnering up with big players in the pharma field that are mission oriented.

I’d like to highlight this because that’s what we really care about: the mission. Also, they know how to develop a drug, a product. I’m referring to Daewoong Pharmaceuticals, Hanall Biopharma, and Astellas Venture Management. These are really big players in the pharma field that in a way are putting a stamp of approval on us, showing that they really believe in this technology and they’re going to help us develop the products. This is very exciting for us, a big step. These organizations know their business, so it’s a very important signal that really speaks for the value and the potential of Turn.

The first important component is the mRNA technology that we are using. This is the technology that the most successful COVID vaccines are based on, and it has been a game changer for several reasons. First, because it’s a very safe approach. You’re not using viral vectors, nor DNA molecules. From a safety standpoint, this is extremely important. Viral vectors are immunogenic for obvious reasons, even though some of them can be used.

Second, it’s very hard to control the duration of the expression of the factors. Typically, you have to control them through molecules such as antibiotics – for example, doxycycline. Antibiotics are found in some foods, so that’s a potential issue when you need to keep the factors silenced and not randomly activated in the cells.

As to DNA, any DNA molecule can integrate into the genome, so, there is always a potential side effect. You cannot control the integration. You don’t know where it’s going to end up, you may mess up some important genes. This may lead to cell death and even to carcinogenesis, if it integrates in the wrong part of the genome.

So, mRNA and RNA in general do not have those issues. By their nature, they only stay in the cytoplasm, they code for the proteins they are supposed to be coding for, and never get into the nucleus, never integrate into the genome. This is why they are much safer to work with.

Then there are several secondary reasons why it’s so important. Again, let’s look at COVID. The industry is developing fast methods to generate large amounts of RNAs. This will make any RNA-based technology very affordable in the long run. This is important to me and to Turn because we want to change the rules of the game, to democratize this technology, making it affordable for everyone, not just for a few wealthy people.

But, RNAs come with a downside, which is delivery. That’s why Turn is also working on developing new delivery systems that are non-cytotoxic, very specific, and very efficacious in targeting specific cell types that we want to rejuvenate. Potentially, this could become a business model on its own because many companies are trying to achieve good targeting, and liquid nanoparticles are going to be an important part of our products.

Liquid nanoparticles themselves are an established technology, so I would guess the problems are mostly with targeting?

Not only. There are some very practical problems, like patenting. The current technology is owned by only a couple of players, and we are developing our own proprietary technology, because there are going to be new opportunities in the market for delivery. Also, some of the current solutions elicit a bit of cytotoxicity and immunogenicity. Some of the adverse effects that we see from vaccines, for example, are due to an immune response to liquid nanoparticles. We are working to make them less immunogenic and more tolerable to the body.

Then, of course, the delivery. With vaccines, and I’m simplifying here, it doesn’t really matter what cells you target, as long as those cells express the epitope of the protein that needs to be recognized by the immune system. In our case, it’s a big deal: we need to make sure that we target specific cell types, because those are the ones that we want to rejuvenate.

RNA also degrades rapidly, which, I guess, could be both good and bad for partial reprogramming, right?

Yes, mRNAs in general have a relatively short half-life. That means, if you bring them into the cells, they’re going to exist there for a few hours, 24, maybe 48 hours, and then they’re gone. So, if you need multiple deliveries into the cells, how do you do it?

This lies at the intersection of the RNA program and the delivery program at Turn. You can think about it in many ways. For example, you can develop a delivery system with slow release in the tissue: the cargo is always the same, but it’s delivered in impulses or slowly released across the period needed to achieve efficacy. The second way is to change the structure of the RNA, so that after it’s delivered, it can last longer in the cells. It can also have regulatory sequences that, if it lasts too long, can shut it down safely and efficiently.

All this is very important in vivo, because you are putting something in the body, and you have to dictate the duration. If you think about ex vivo, you isolate the cells and you have them in culture, and then even if your RNA has a short half-life, you can still hit the cells many times with “pulses of reprogramming”. You can make sure that the cells haven’t lost their identity, that they have a very robust juvenile phenotype. At that point, you reintroduce them back into the body.

Both strategies are still open. For in vivo, you need to make sure that you are really in control of the cargo, the delivery, the duration. Ex vivo, most of these problems are irrelevant. That’s why immunotherapy is probably going to be a very fast program for us, because it’s an ex vivo program.

You have your artificial niche technology to help you with ex vivo. Explain that a bit. 

The artificial niche was developed by Marco Quarta, one of the co-founders, when he was working at Stanford. It is a method to isolate stem cells from muscles and keep them quiescent – basically, to keep their stemness, which is crucial. This is how you maintain their ability to differentiate into all the cells of the muscle tissue. It’s a technology that is exclusively licensed to Turn and that we’re going to utilize for the rejuvenation of the muscle stem cells after they are biopsied out and isolated from the tissue. It can be extended potentially to other contexts.

Every stem cell is different. Stem cells that reside in the intestine are different from those in the muscle. So, every micro-niche needs to be defined in a different way, but for now, we have the one that works very well for muscle cells. That’s going to be utilized in combination with ERA for ex vivo treatments of muscle stem cells that are isolated from the patient.

So, the idea here is to rejuvenate stem cells so that they regain their youthful function, right?

Correct. That’s because most of the cells in the tissue are not stem cells. Probably 99.9% of the cells in any tissue are fully differentiated, and they make up the organ. There is obviously a possibility to intervene on those cells, but probably a smarter idea is to target the cells that are responsible for the regeneration of the whole organ. You can target those in vivo, if you know how to do it, or ex vivo, if you know how to culture, which is where the artificial niche comes in handy.

If you make a stem cell younger, you are making the whole organ younger, because that cell now is going to regenerate the entire tissue. We were able to restore strength of a whole muscle to the level of a young untreated muscle. This is very significant.

This sounds like a really “lean” strategy that could be implemented quickly. That brings me to the question of competition. The reprogramming field has become crowded with well-funded ventures like Altos Labs but also many smaller companies.

On one hand, it’s actually reassuring in some sense. First and foremost, I’m a scientist, so I’m a big believer in reproducibility of data. As long as this is reproducible, I’m the happiest man in the world, because that means that what I did is working (not that I have reasons to doubt it). If somebody else sees the same thing in a different context, tissue, environment, in a different humidity or whatever that is, it’s very reassuring. So, I’m pleased that the field is booming.

When it comes to competition between companies, as I said, we were the first to show that this works in humans. We have the technology that is by far the safest and probably the one that’s going to develop to clinical fruition most rapidly.

It’s good that the field is so big: there are so many things that we can do. At the end of the day, there’s going to be room for everybody. What I care about is to show that what we have done works in humans. We want to be the first ones to start working with humans, and I think we’re close.

There are also a lot of conditions that you can work on.

Yes. Actually, I see Turn as a platform company. We have these ideas and this technology, including delivery, that can be, in principle, applied in various contexts to many different conditions and indications. We want to tackle many of them one by one, but currently we are being very down-to-earth and strategic about how we achieve that. We want to start with something that is going to make a difference for people quickly.

Despite the field being crowded, we haven’t seen a lot of successes. The elephant in the room is Calico, which apparently has little to show. Does this worry you a bit?

No, I am very optimistic based on what I see happening at Turn. To be fair, though Calico have been around for a while, they haven’t been working on reprogramming until recently. They’re dealing with longevity in a different way, focusing on neurobiology, I think. Turn, on the other hand, was one of the first companies to really work on reprogramming, and now, of course, there are the Altos Labs.

I’m not too concerned about that, no. Again, I can speak about Turn. We’re making tremendous progress, and our data is strong. Am I worried about the fact that big money is being put into other entities or corporations? No, because in the end, having a lot of money doesn’t guarantee success. The execution, the strategy, the foundational science are all very important, and we check all those boxes.

Let’s talk again about reprogramming as a whole. Here’s something I just read on Twitter, from a prominent researcher. He wrote that the Yamanaka factors are simply “oncogenes”. It’s a rather widespread concern, so could you maybe briefly explain the relationship between cellular reprogramming and cancer?

Sure. I don’t know who said that, but it’s an overly simplified statement. It’s like saying that the only thing fire does is destroying forests. It’s definitely not the whole truth.

It boils down to the control of the reprogramming window. If you know how to control the duration of the reprogramming, you can achieve partial reprogramming, reverting only some aspects of the epigenetic landscape to a more juvenile and functional state, without impacting the cellular identity.

Some of the factors are definitely potentially carcinogenic in the long run. C-Myc, for example, is a proto-oncogene, but there are a few thousand or a few hundred thousand cells in the body that express high levels of it. They know how to regulate it, how to utilize it, and in the short run, c-Myc does very good things.

For example, it impacts the mitochondrial activity, it represses retroviral elements. If you express it at super-abundant levels for a long time, there is a possibility that c-Myc may become carcinogenic, but the technology we are using is short-term, tuneable, and regulatable. This lets you take the advantage of c-Myc expression without the disadvantages. And the same is true for all the other factors.

Now, does that mean that this is going to be the cocktail that we’re going to use for every cell, every tissue for the rest of our lives? Probably not. We’re starting there because we know it’s the most powerful cocktail that gives the highest degree of rejuvenation in the shortest amount of time, so, first, we are studying this process.

We’re also learning that as a consequence of the expression of those factors, other factors are getting engaged, and potentially we may complement the cocktail with one or more of those, substitute some of them, or maybe replace the cocktail with something entirely different. The good thing about this cocktail that we’re using is that it works across many different cell types equally.

I think you’ve added two more factors to the original four. Why? 

If you use those six factors, you get the fastest reprogramming to iPSCs, that is, full reprogramming. It takes two to three weeks for the cells in culture to go all the way to an embryonic-like state.

Our original thinking was, let’s use this cocktail, which is the most powerful and effective, and let’s see when during this process we can stop the reprogramming but still see rejuvenation in the cell. Then, maybe we can change the cocktail, take some factors out, and expand the timing of that process, because it is true that if you remove three or four of these factors –  if you use just OSK, for example – it takes you probably twice as long to make iPSCs (induced pluripotent stem cells). That means that there is a much safer window of opportunity.

Right now, we are using the most powerful cocktail, but we’re treating the cells for a very short time. At some point, we may come up with an abridged version of the cocktail that could have less potential side effects, even for a longer period of time.

The third option would be to replace the cocktail entirely with something that still does the rejuvenation but without this potential downside of carcinogenesis, which, again, is a problem only if you lose control of those factors, but we don’t.

You probably need to do it quickly because you want to keep the stem cells quiescent?

Yes, but it’s also about the cost – the shorter the treatment, the cheaper it’s going to be, and that’s very important. And we are seeing that in stem cells, two days of treatment are enough to get the muscle younger by years.

What are the limits of reprogramming? How big is the part of aging that reprogramming can fix? Because there are things like damage accumulation in the extracellular matrix, accumulation of somatic mutations, et cetera.

It’s an excellent question, but not an easy one, so let’s unfold it. Strictly speaking, when it comes to genetic mutations, there is nothing we can do with this technology. If there is a mutation, you cannot reverse a cell with that particular mutation to a state before the mutation occurred.

This is not a major issue in my view because most of the mutations that happen in cells are harmless. Only a small fraction of cells accumulate very dangerous mutations, and those are the senescent cells. They constitute a small fraction of all the cells in the body, probably between 1% to 5%. Senescent cells accumulate large mutations, chromosomal rearrangement, shortening of telomeres. They are massively genetically affected.

We don’t want to reprogram those cells; we want to eliminate them. You can do that in two ways. One way is to specifically target them with senolytics, getting them out of the equation, but you still have an aged body left behind. You have aged cells, and there’s nothing you can do about it, unless you reprogram them, and that’s what Turn wants to do.

The second thing is that, if you know how, to target in vivo the non-senescent cells. In fact, the senescent cells are non-proliferative, they’re stuck there, just secreting pro-inflammatory cytokines. If you target the cells that are non-senescent but still aged, and you revert them to a more juvenile phenotype, these cells start proliferating. They start producing new cells, diminishing the relative ratio of the senescent cells in that specific issue, and that creates a positive feedback loop.

The third point, again, we mentioned that if you can target the stem cells, then you are working at the root of the tissue, on the cells that generate all the cells in the body. That means you can regenerate the entire tissue just by targeting the cells that are responsible for the regeneration of the tissue. We have seen this: we have targeted the stem cells, and we have seen the rejuvenation of the entire tissue.

What about the damage to the extracellular matrix? That’s something that neither reprogramming nor senolytics seem to be able to tackle, right?

That’s not necessarily true. For instance, reprogramming of fibroblasts, which we have done, leads them to a state where they’re secreting more collagen, more elastin. They not just become younger, they also start secreting juvenile factors and produce less pro-inflammatory cytokines and more anti-inflammatory cytokines, which affects the environment around them. They also produce more metalloproteinases, which are the enzymes that degrade that the extracellular matrix.

In short, they really start behaving like young fibroblasts, restructuring the environment around them. In my opinion, this is a domino effect. You target one cell type, and it starts not just looking young but behaving young, rebuilding the whole tissue.

To really tackle aging, we probably do need combinations of senolytics, reprogramming, and other things. So, what are you currently excited about in the longevity field as a whole, in terms of technologies and advances? 

I am excited about senolytics. I still have to see tangible repercussions of this, but I think they’re going to come in the near future. And I am particularly excited about the combination of senolytics and reprogramming, also because I have a hunch that removing senescent cells might help a lot. Senescent cells have been shown to promote reprogramming in vivo to an embryonic-like state. So, if you remove them first, then subsequent rejuvenation can potentially be much more effective any even safer.

There are a lot of research avenues that are very exciting. For example, the work that has been done on metformin, on diet supplementation and caloric restriction. Each one of those, with the exception of senolytics, is targeted towards a very narrow aspect of aging. Reprogramming, on the other hand, treats aging at the very root. It is broadly applicable as a concept, and it has a number of repercussions, as we have shown. If you target the nucleus, the chromatin, the epigenetic landscape, you are also targeting all kinds of downstream effects – that is, aging in its entirety, you might say. We have shown that the cells are behaving in a more youthful way on the physiological level, the transcriptomic level, the methylation level, the epigenetic level, and the functional level. So, it is a much deeper and more effective way of treating aging at its roots.

I am a bit worried about what I see as the tendency to shy away from the idea of lifespan extension. For instance, Altos Labs has said repeatedly that it’s not a longevity company, as did your CEO in a recent interview. What is the reason for that?

I think that the field, unfortunately, is cursed in a way by this idea that by doing what we are doing, we are thinking about extending longevity, about immortality, et cetera. I think it’s very important to clarify that it’s not our mission.

It’s not that I’m shying away from the idea of living longer, and I don’t think there’s anything wrong with that idea. We do this on a daily basis when we think about our diets, when we exercise. But I want to stress that, first of all, we just want to impact people’s healthspan. Obviously, every time you do a medical intervention that saves life, you’re impacting longevity. That’s the purpose, right? You want to prevent people from dying, and so they live longer.

That’s not what we are aiming at. I want to make sure, for example, that a person who is crippled by osteoarthritis can walk. I want to make sure that people who are frail because their muscles have lost strength, can perform their daily duties without pain. I want to make sure that people who lost their sight because of glaucoma or macular degeneration can start seeing again.

What we want to achieve is a healthier life that will inevitably be longer as well.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.
Mouse DNA

FOXM1 Induction Extends Lifespan in Mice

In a new study published in Nature Aging, researchers have shown that inducing a truncated FOXM1 gene extends lifespan in both progeric and naturally aging mice [1].

FOXO genes and longevity

Forkhead box (FOX) genes are transcription factors: genes that drive the expression of other genes and are known to play an important role in cell proliferation and longevity. Forkhead box Os (FOXOs) are particularly famous, as they have been shown to promote autophagy, suppress inflammation and tumor progression, and maintain the stem cell pool [2]. A specific member of this gene family, FOXO3, is directly associated with human longevity [3].

FOXM1 is another forkhead box gene that has gained the attention of aging researchers as an important oxidative stress response regulator and one of the major players in tumorigenesis [4,5].

Previous studies have shown that FOXM1 is decreased in the cells of older healthy people as well as people whose aging is accelerated by Hutchinson-Gilford progeria syndrome, which is caused by a mutation in the LMNA gene. Inducing FOXM1 expression delays senescence in these cells [6].

In this study, the researchers set out to check if it’s possible to delay aging by increasing the expression of FOXM1 in progeroid and naturally aged mice. However, instead of inducing the fully functioning FOXM1, a modified gene that did not contain an N-terminal part was chosen.

The C-terminal side of FOXM1 plays an important role in transcriptional activity, and the N-terminal side plays a role in the regulation of intracellular processes, such as controlling the segregation of genetic material during cell division. The N-terminal side was also shown to have an autoinhibitory function repressing the activity of the protein at specific cell cycle stages [7]. Truncating the N-terminal allowed for the constant expression of this protein.

FOXM1 delays aging in a mouse model of accelerated aging

First, the researchers generated a progeric mouse model that expressed truncated FOXM1 in the presence of doxycycline. They then collected adult mouse fibroblasts and induced the expression of FOXM1 in vitro over a short period. They observed decreased DNA damage and nuclear abnormalities, increased cell proliferation, and ultimately reduced senescence and a rejuvenated epigenetic state.

In the next part of the experiment, FOXM1 was induced in the cell culture in a cyclic, on-off manner: 4 days on, 5 days off, 4 days on. This scheme proved efficient in delaying senescence.

Following the success achieved in vitro, the researchers employed the truncated FOXM1 cyclic induction in young progeric mice to see if the progeroid phenotype could be prevented. The mice followed a 3-day-on, 4-day-off cyclic scheme for 12 weeks. Impressively, they showed not only reduced skeletal defects and growth retardation but also improved cardiac function, which led to ~25% lifespan extension in these mice compared to their untreated progeric counterparts.

Next, the researchers assessed cyclic FOXM1 induction in middle-aged progeric mice. As expected, the treatment brought down the expression of senescence-associated biomarkers in several tissues to the wild-type level. Moreover, skin homeostasis, aortic wall thickening, and bone density and volume were all improved.

FOXM1 delays aging in naturally aging mice

Although promising, the results from the experiments in progeroid mice might not translate into naturally aging animals. Therefore, the researchers applied truncated FOXM1, again using a 3-day-on and 4-day-off scheme, for 80 weeks to 8-week-old naturally aging mice.

Remarkably, the treatment extended the lifespan of aged mice by almost 30% compared to controls. Tissue examination revealed that truncated FOXM1 induction rejuvenated multiple organs: aorta, skin, fat, and muscle.

The researchers observed reduced muscle atrophy and a higher number of muscle stem cells, along with increased muscle strength. In addition, decreased aortic fibrosis and wall thickening, as well as increased subcutaneous fat, were demonstrated.

Confirming previous results, naturally aging mice had downregulated senescence biomarkers in skin, kidney, fat, and muscle following truncated FOXM1 induction.

Next, the researchers conducted transcriptomic analysis of the aortic and calf muscle tissues to see which pathways are affected by FOXM1 induction. In both tissues, FOXM1 primarily altered the expression of genes involved in metabolism and inflammation. Moreover, in the aorta, pro-inflammatory and apoptotic pathways, as well as pathways related to senescence and the SASP, were downregulated.

Finally, the authors showed that FOXM1 induction causes gene expression changes similar to those achieved with rapamycin and other lifespan-extending interventions.

Importantly, throughout the study, the authors observed that the truncated FOXM1 induction increases the expression of the full-length endogenous FOXM1, thus leading to the organismal rejuvenation effect brought on by the gene’s transcriptional and non-transcriptional activity. This turned out to be particularly important for tumor prevention via the functioning N-terminal of the endogenous gene.

Abstract

The FOXM1 transcription factor exhibits pleiotropic C-terminal transcriptional and N-terminal non-transcriptional functions in various biological processes critical for cellular homeostasis. We previously found that FOXM1 repression during cellular aging underlies the senescence phenotypes, which were vastly restored by overexpressing transcriptionally active FOXM1. Yet, it remains unknown whether increased expression of FOXM1 can delay organismal aging. Here, we show that in vivo cyclic induction of an N-terminal truncated FOXM1 transgene on progeroid and naturally aged mice offsets aging-associated repression of full-length endogenous Foxm1, reinstating both transcriptional and non-transcriptional functions. This translated into mitigation of several cellular aging hallmarks, as well as molecular and histopathological progeroid features of the short-lived Hutchison–Gilford progeria mouse model, significantly extending its lifespan. FOXM1 transgene induction also reinstated endogenous Foxm1 levels in naturally aged mice, delaying aging phenotypes while extending their lifespan. Thus, we disclose that FOXM1 genetic rewiring can delay senescence-associated progeroid and natural aging pathologies.

Conclusion

This study highlights the importance of a specific gene and the deleterious effects of its repression in a model of accelerated aging along with natural aging. Although aging is a complex process with multiple pathways, targeted approaches like this one often bring impressive results in extending healthspan and lifespan, at least in model organisms. As we can see, this requires careful planning and a thorough understanding of the target gene’s function.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Ribeiro, R. et al. In vivo cyclic induction of the FOXM1 transcription factor delays natural and progeroid aging phenotypes and extends healthspan. Nature Aging 2, 397–411 (2022).

[2] Murtaza, G. et al. FOXO Transcriptional Factors and Long-Term Living. Oxid. Med. Cell. Longev. 2017, 3494289 (2017).

[3] Willcox, B. J. et al. The FoxO3 gene and cause-specific mortality. Aging Cell 15, 617–624 (2016).

[4] Park, H. J. et al. FoxM1, a critical regulator of oxidative stress during oncogenesis. EMBO J. 28, 2908–2918 (2009).

[5] Ye, X. et al. Quantitative proteomic analysis identifies new effectors of FOXM1 involved in breast cancer cell migration. Int. J. Clin. Exp. Pathol. 8, 15836–15844 (2015).

[6] Macedo, J. C. et al. FoxM1 repression during human aging leads to mitotic decline and aneuploidy-driven full senescence. Nat. Commun. 9, 2834 (2018).

[7] Laoukili, J. et al. Activation of FoxM1 during G2 requires cyclin A/Cdk-dependent relief of autorepression by the FoxM1 N-terminal domain. Mol. Cell. Biol. 28, 3076–3087 (2008).

Crowd Funded Cures

Discussing Crowd Funded Cures with Savva Kerdemelidis

We have written extensively about VitaDAO, a collective dedicated to community-governed, decentralized drug development. Probably the fastest and cheapest way to get geroprotective drugs to the market is by repurposing existing drugs, such as rapamycin, metformin, and acarbose. These drugs cost next to nothing, have a known safety record, and have shown a lot of promise in animal models and/or in human population studies. Unfortunately, pharma companies are not interested in this avenue since those old drugs cannot be patented and sold at a high price. This is why VitaDAO has partnered with LEAF to support Dr. Brad Stanfield’s rapamycin + exercise trial.

While communities like VitaDAO can be effective in crowdfunding and facilitating research, money from big players might still be essential to launch even a repurposed drug. To solve this problem, VitaDAO joined forces with Crowd Funded Cures, an initiative of the Medical Prize Charitable Trust, a non-profit founded by Savva Kerdemelidis.

The idea is to use a flexible prize fund, a type of “pay for success” (PFS) contract, to finance large clinical trials. Simply speaking, an organization, such as a big insurance company or a government agency, promises to pay a sum of money in the event of the success of the clinical trial. This lowers the risk enough to make it palatable for potential investors.

We asked Savva Kerdemelidis a few questions for a deeper dive into the world of DAOs, PFS contracts, and intellectual property on the blockchain.

Tell us briefly about your project Crowd Funded Cures and its partnership with VitaDAO, the rationale, goals, and structure of both organizations, and what has been achieved since their inception.

Crowd Funded Cures is the initiative of the Medical Prize Charitable Trust, the NZ-registered non-profit that I established in 2013 to execute the idea set out in my Masters of Law thesis to use flexible prizes to incentivize the development of unmonopolizable therapies. The impetus for doing the Masters and setting up the charity was that I had noticed that many otherwise viable medical treatments lack a business model under the patent system. These “financial orphans” could be cures for many diseases and save millions of lives and trillions of dollars in healthcare costs.

However, they suffer from a market failure or “tragedy of the commons” because patents cannot be leveraged to enforce a monopoly price, which is necessary to recover the cost of R&D, i.e., of the expensive clinical trials needed for regulatory approval. The main categories of such unmonopolizable therapies include finding new uses for off-patent or generic drugs, dietary supplements, diets, and lifestyle interventions.

The goal of Crowd Funded Cures was to help fix this market failure by raising a pilot flexible prize fund to incentivise an unmonopolizable therapy to treat Crohn’s disease (e.g. low-dose naltrexone or semi-vegetarian diet), which my fiancée at the time was diagnosed with. However, my life and career as a legal consultant and patent attorney intervened, and the project lost steam.

More recently, there has been a perfect storm, with COVID highlighting the opportunity for generic drug repurposing and the public harm due to lack of private incentives to conduct clinical trials (as an example, using low-cost off-patent fluvoxamine to treat COVID-19 vs expensive patented molnupiravir). Web3 and blockchain have also shown how certain projects can raise hundreds of millions of dollars in seconds.

There has been renewed interest in how Web3 and DAOs can help solve global coordination problems and the use of financial innovation to align private incentives with funding public goods. Also, an aging baby boomer population, Eroom’s law, escalating healthcare costs, big data, and cheap DNA testing, wearables, and diagnostics all show that new incentive models must be leveraged if medical innovation is to reach its full potential in this century.

In early 2020 after COVID hit, I was motivated to put more energy into Crowd Funded Cures. Our partnerships advisor Spiro reached out to the leading Web3 DeSci project, VitaDAO, in mid-2021, and we found a lot of synergies with their community – mostly scientists who were also frustrated at the financial bottlenecks for science funding in the “valley of death” for early-stage biopharma research.

As a solution, they proposed the use of IP-NFTs [intellectual property non-fungible tokens], using Molecule.to’s platform, established by Paul Kohlhaas and Tyler Golato. VitaDAO had just raised over $5 million in a token sale to fund longevity research. In less than one year, the 5000-plus-member VitaDAO community has evaluated over 60 research proposals and deployed approximately $2 million dollars in funding – a monumental achievement.

This includes $40 thousand for Crowd Funded Cures to conduct a Generic Drug Repurposing PFS Feasibility Study and $50 thousand to support a pilot IP-NFT x Pay-for-Success contract to fund a Phase 2a rapamycin + exercise study by Dr. Brad Stanfield, a New Zealand doctor and longevity researcher. Crowd Funded Cures has also grown over the past few months to over 100+ members in its Discord, and 10 volunteers. We also plan to conduct a token sale to launch a DAO this year.

PFS (Pay-for-Success) seems like a great idea. Could you please explain how the PFS/IP-NFT framework works?

A Pay-for-Success (PFS) contract is essentially a kind of conditional grant or prize, whereby a payment is made upon fulfilment of certain criteria. Other names used by think tanks such as the Oxford Government Outcomes Lab are outcomes-based financing or Social Impact Bonds (SIBs). The idea is that if the government wishes to incentivize private industry to deliver public goods or services (such as reducing prisoner recidivism or homelessness), they can back a PFS contract and reward certain outcomes (e.g. $10 thousand for keeping a prisoner out of jail for one year after release or putting a homeless person into a home and employment within one year).

SIBs are a relatively new phenomenon, with the first established in 2012 in the UK to reduce prisoner recidivism, but now with over $700m raised globally. Dr. Bruce Bloom of the generic drug repurposing charity Cures Within Reach had the idea to use SIBs to repurpose generic drugs in 2015 [Dr. Bloom left Cures Within Reach in 2019], and helped bring the idea to the NHS with a UK rare disease charity (Findacure UK, renamed as Beacon). Unfortunately, this did not obtain backing from the UK government. Crowd Funded Cures’ mission is to continue this important work and obtain private and public backing for generic drug repurposing PFS contracts.

So, IP-NFTs are a framework established by Molecule.to. It allows fractionalized ownership of IP which can be traded on the crypto markets and benefit from the increased liquidity provided. The other advantage of allowing fractionalization and distributed ownership is greater consistency with open source and consumer co-op business models (e.g., if a drug is owned by patients, then they are less likely to be subject to exploitative pricing).

A PFS contract can be combined with the IP-NFT framework to allow investors to fund unmonopolizable therapies such as repurposing generic drugs. This would otherwise be a non-viable investment for VCs because it would not be possible to enforce a monopoly price (unless the generic drug can be patented as a reformulation, which is not always possible). For example, instead of earning ROI via patent royalties and monopoly pricing, the rewards for the IP-NFT investors are provided by payers backing the PFS contract, upon publication of clinical trial data encrypted in the IP-NFT showing the repurposing of a generic drug to successfully achieve a clinical outcome.

The payers will benefit from the development of a new treatment protocol that can improve patient health and reduce healthcare costs. In essence, a PFS contract allows the payers (which could be a syndicate of public and private health insurers) to put a price on an off-patent treatment protocol in advance. This creates a business model for funding open-source medicines, which would outcompete new patented medicines.

Why would any specific insurance company choose to be the one to shell out the money, if all the insurers would equally benefit from the success?

There is indeed a free-rider problem to the extent that other payers, such as private health insurers, can benefit from the knowledge of new successful treatment protocols without having paid for them. However, there are some first-mover advantages. For example, under a PFS contract, a payer may get exclusive access to the “branded” repurposed generic that has obtained regulatory approval. Other payers would be forced to use the drug off-label, which doctors may be reluctant to prescribe due to increased risk of liability and/or lack of insurance coverage.

There will also be the PR value of helping develop a low-cost open-source medicine, which would have a massive positive impact on public health globally. Payers can have access to the raw clinical trial data encrypted in an IP-NFT, which may be useful to help develop new medicines and/or contain other commercially valuable information. Let’s not forget that large government single-payers such as the NHS and philanthropies that directly fund clinical trials should not have this concern.

What is the relationship between VitaDAO, the Longevity Prize, Crowd Funded Cures and Dr. Stanfield’s rapamycin study? How will you raise funds for the prize, and have you had contacts with insurers?

VitaDAO submitted an application for funding on Gitcoin for a Longevity Prize, which was one of the highest-funded projects, with over $190 thousand raised to date. The goal of the Longevity Prize is to issue smaller prizes to incentivize longevity research. They also intend to set aside $100 thousand for a generic drug repurposing Longevity Prize to support an IP-NFT x PFS pilot with Crowd Funded Cures. We have identified Dr Brad Stanfield’s $400 thousand Phase 2a RCT (randomized controlled trial) for rapamycin + exercise as a case study to apply the PFS model. In essence, having a generic drug repurposing Longevity Prize in place will create a commercial business case for VitaDAO to invest in an RCT for an off-patent therapy via an IP-NFT.

Dr. Stanfield is highly supportive of the PFS model because it has been extremely difficult for him to raise the funds via philanthropic means (despite having 100k subscribers on his YouTube channel and support of Lifespan.io). This is a common theme for many charities trying to raise money for clinical trials – finding philanthropic donors is hard. However, with a PFS contract, the “donors” are actually pre-purchasing successful clinical trial data. This is similar to crowdfunding platforms such as Kickstarter, which is effectively a pre-sale.

For Dr. Stanfield’s RCT, the purchased data would be a novel and successful treatment protocol combining exercise three times a week (with a standardized exercise bike) with an intermittent weekly dose of rapamycin when not exercising, that results in a successful primary clinical outcome, i.e. trend towards improvement in the 30-second chair stand test, which is a standard test for strength in the elderly and is strongly correlated with healthy longevity.

We are hoping that with a PFS model and by engaging with the longevity and crypto community, it will be possible to raise a $1 million payer fund. This will allow VitaDAO to fund the entire Phase 2a via an IP-NFT that will be eligible to receive an outcome payment from the payer fund if the primary clinical outcome is met.

In the event that the RCT is not successful, the payer fund can be used to incentivise other generic drug repurposing research (perhaps a different treatment protocol/dosing regimen for rapamycin or another generic drug like metformin, resveratrol, NMN, or NR). This would be a world first and help validate the business model for a PFS contract to incentivize the development of off-patent/open-source medicines, which also transfers risk from payers/donors to investors.

Crowd Funded Cures has had contacts with various payers over the last couple of years, including PHARMAC (NZ government single payer), BARDA (US government agency), NCATS (NIH generic drug repurposing institute), and various philanthropies, including LifeArc (large UK charity), Wellcome Trust, Chan Zuckerberg Initiative, and others. However, these bureaucratic organizations will likely be slow to back a PFS contract.

It is hoped that with our feasibility study, we can show the financial and business case to do so on the basis of overall cost savings/health impact exceeding the costs of outcome payments/payer fund. It is noted that even if the payer fund/prize is too small to incentivize investors to front the money for the clinical trials, it will be possible to create a hybrid PFS model with part of the money funded by investors and the rest funded by philanthropy to increase investor ROI.

What is the importance of this particular study?

Rapamycin is the only drug that have been shown to reproducibly extend lifespan both in male and female mice, according to the Interventions Testing Program. Exercise has also been shown to reduce the age-associated decline in strength. However, the muscle-building enzyme mTOR, target of rapamycin, is also overexpressed in the elderly, but paradoxically, does not lead to improved strength.

Rapamycin downregulates mTOR, and for this reason, Dr. Stanfield had proposed combining exercise during the week with a single intermittent dose on the weekend when the patient is not exercising, with the hypothesis that it could restore mTOR balance and improve muscle performance. The RCT is also small to test whether this approach is safe and won’t cause any adverse effects before scaling to a larger RCT.

This kind of experimentation to “de-risk” optimal dosing regimens is perfectly suited for a PFS or prize-like incentive which does not rely on selling as many drugs as possible to maximize profits, as with the current patent-centric incentive model relied on by the biotech industry. For that reason, we are excited about the opportunity for the PFS model to help researchers to get private funding for their new and innovative ideas even with a weak patent position, which could have a massive impact on longevity and global health generally.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.
Mouse feeding

Caloric Restriction, Feeding Times Lengthen Mouse Lifespan

In a new study published in Science, researchers show that caloric restriction and time-restricted feeding have an additive effect on lifespan in mice [1].

A well-known intervention

Caloric restriction is considered the first intervention to reliably show that aging is a malleable phenomenon. The first trials were conducted on rats back in the 1930s and showed that drastic caloric restriction of 20% to 30% significantly increased lifespan compared to a freely fed (ad libitum) control group [2].

As promising as these early results were, the reality is more complicated. First, lab animals tend to overeat when food is abundant, so caloric restriction could just bring the number of calories to normal levels, hence it might not work as well in people who already count their calories; there have been virtually no human trials of drastic caloric restrictiom, because it’s hard to maintain.

Second, in most experiments with rodents, the animals were fed once a day. They frantically consumed their limited amount of food in roughly two hours and then went on to involuntarily fast for 22 hours straight. Today, this would be called intermittent fasting, another intervention that is gaining popularity for its supposed health-promoting qualities [3]. There are several intermittent fasting regimens, including “day in – day out”, but some of the most popular involve only eating during a 2–12-hour window.

Therefore, it is hard to determine whether it’s fewer calories or fewer feeding hours that cause caloric restriction to work so well in mice and rats. This new study attempts to provide an answer, using something the scientists of the 1930s didn’t have: automatic feeders.

If you’re a mouse, eat at night

The researchers divided male mice into six groups. The control group was fed ad libitum, with food readily available during night and day. All the other groups were calorically restricted – they received 30% less calories than mice in the AL group were consuming. The first calorically restricted group received food throughout the day, with one food pellet being dispensed by an automatic feeder every 160 minutes, which took away the influence of intermittent fasting. The second calorically restricted group was fed only for 2 hours during the day, the third for 12 hours during the day, the fourth for 2 hours during the night, and the fifth for 12 hours during the night.

In the freely fed group, the median lifespan was 792 days, which is quite normal for this particular highly popular strain (Black 6). This is important, because in some studies, controls are short-lived, which can cast doubt on the results.

All the caloric restriction groups demonstrated considerable gains in lifespan compared to controls, but there were major differences. The first group, mice who were being fed throughout the day, lived for only about 10% longer than controls. The two groups that were fed during the day came close to each other: the second group lived 21% longer, and the third group lived 19% longer on average than the controls. The two final groups were clear winners, with a 35% increase in median lifespan for the fourth group and 33.4% for the fifth group.

Caloric Restriction Results

Obviously, mice that were fed at timed intervals throughout the day had their sleep disrupted, which might have diminished the gains in lifespan. The researchers admit that this demands further investigation. Mice are nocturnal animals, so if they are forced to eat during the day, this is unnatural for them and might explain the difference between the night and day groups.

There are two important takeaways from the data: caloric restriction and intermittent fasting have an additive effect, and reducing the feeding window to 2 hours seems to add little value compared to a 12-hour window.

Additional benefits

The researchers confirmed that caloric restriction confers clear metabolic benefits. While insulin levels increased with age in the control group, this increase was attenuated in all of the restricted groups. Even though the insulin levels of young calorically restricted mice were comparable to those of young mice in the control group, the former had lower blood glucose levels, indicating improved insulin sensitivity.

The researchers also analyzed gene expression in the liver. Transcriptomes of young and old mice in the control group clustered separately due to obvious age-related changes. The transcriptomes of young mice in the caloric restriction group clustered separately, meaning that caloric restriction affects gene expression in young mice.

Finally, all old calorically restricted mice also clustered together in their transcriptomes, between old mice in the control group and young calorically restricted mice, showing that the intervention attenuates age-related transcriptomic changes. About 50% of age-related changes in gene expression were reversed by all caloric restriction regimens.

The researchers found 159 genes that responded specifically to intermittent fasting rather than caloric restriction, confirming that their effects are at least somewhat additive. 69 genes were specifically protected against age-related expression changes in groups that were restricted to low-calorie nightly feedings.

Conclusion

This study attempts to disentangle the effects of caloric restriction and intermittent fasting and to give us an improved understanding of how those two interventions work. Since drastic reduction of calories is hardly achievable by humans in real life, the indication that time-based feeding might be partly responsible for the life-prolonging effect of caloric restriction is encouraging. The lack of sex diversity is a serious limitation since many life-prolonging interventions seem to work differently in males and females. Hopefully, this will be addressed in further research.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Acosta-Rodríguez, V., Rijo-Ferreira, F., Izumo, M., Xu, P., Wight-Carter, M., Green, C. B., & Takahashi, J. S. (2022). Circadian alignment of early onset caloric restriction promotes longevity in male C57BL/6J mice. Science, e.

[2] McCay, C. M., Crowell, M. F., & Maynard, L. A. (1935). The effect of retarded growth upon the length of life span and upon the ultimate body size: one figure. The journal of Nutrition10(1), 63-79.

[3] de Cabo, R., & Mattson, M. P. (2019). Effects of intermittent fasting on health, aging, and disease. New England Journal of Medicine381(26), 2541-2551.

Fluorescent cells

The Development of Glowing Pluripotent Cells

A team of Chinese researchers has described a novel method of illuminating pluripotent stem cells in a paper published in Aging.

How and why

Using a lentivirus, the researchers genetically engineered mouse embryos to express green fluorescent protein (GFP) when it expresses the Yamanaka factor Oct4. GFP, a harmless protein that glows bright green under ultraviolet light, has been used for decades in the bioengineering field as a visual indicator of various processes [1]. Therefore, the researchers reasoned, it could also be used as a visual indicator for pluripotency: the ability of cells to transform into many other types of cells.

Existing methods for analyzing cells, such as fluorescence-assisted cell sorting (FCAS) and reverse transcriptase polymerase chain reaction (RT-PCR), already use fluorescent tagging to detect what proteins are being expressed. By integrating pluripotency-activated fluorescence right into the cells themselves, this process would logically become much cheaper and easier.

In this paper, the researchers offer several related use cases for this technology, most of which involve reprogramming cancer cells into induced pluripotent stem cells (iPSCs).

Determining if it works

Using the Yamanaka factors, the researchers reprogrammed mouse embryonic fibroblasts (MEFs) into iPSCs and observed the results. 9 days after the introduction of these factors, the fluorescence became slightly apparent, at day 14, it was much more visible, and by day 24, it was strongly visible.

The researchers analyzed these cells with a conventional assay of Oct4 along with other factors known to be linked to pluripotency, such as Nanog, SSEA1, and the Yamanaka factor Sox2, and they found that the expression of GFP was colocalized with these compounds.

Further testing found that these genetically engineered cells induced to pluripotency behaved like normal embryonic stem cells, including in their cellular division cycles. Placing them into embryoid bodies caused these cells to differentiate into functional cells; in this experiment, they differentiated into cardiomyocytes (heart muscle cells). Injecting these iPSCs into mouse blastocysts let them grow into living chimeric mice, and injecting them into older animals generated teratomas, as expected.

Most importantly, Oct4 and GFP, alongside Sox2, decreased smoothly with differentiation, proving the usefulness of GFP as a marker for pluripotency: when the pluripotent state went away, so did the fluorescence.

Conclusion

Despite all the technological advancements made in this regard, biological experiments are neither easy nor cheap. A built-in visual indicator and fluorescence assay helper will surely aid the work of researchers attempting to create therapies that rely on pluripotent iPSCs – or, perhaps, therapies in which pluripotency is something to avoid.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Kain, S. R., Adams, M., Kondepudi, A., Yang, T. T., Ward, W. W., & Kitts, P. (1995). Green fluorescent protein as a reporter of gene expression and protein localization. Biotechniques, 19(4), 650-655.

Joao Pedro de Magalhaes

João Pedro de Magalhães on Reprogramming and Aging Theories

Professor João Pedro de Magalhães leads the Genomics of Ageing and Rejuvenation Lab at the Institute of Inflammation and Ageing in the University of Birmingham. He is also CSO of YouthBio Therapeutics, a US-based biotech company that develops rejuvenation gene therapies based on partial reprogramming by Yamanaka factors. Last year, he co-authored The hoverfly and the wasp: A critique of the hallmarks of aging as a paradigm. Here, we discuss this critique and other fascinating geroscience-related topics.

Most mature scientific fields have a unified theory, but geroscience doesn’t. Why is it important for our field to have such as theory? 

We don’t have a good understanding of a lot of complex diseases, particularly quite a few age-related diseases. For instance, we don’t know what causes Alzheimer’s. Of course, once you understand what causes a certain pathology or a biological process, that makes it a lot easier to intervene in it.

Infectious diseases are probably the best example. If you understand that AIDS is caused by HIV, then you can try targeting HIV to prevent AIDS. Having a pathophysiological, mechanistic understanding of the causes of a given disease allows you to better develop therapies.

That’s why it’s important to have a biological understanding of aging – so we can better intervene in it. One of the biggest questions in the field of aging is still “Why do we age?” There are several theories, or hypotheses, but none of them have been proven yet.

In your recent paper, you offer an interesting, and I think pretty convincing, critique of the hallmarks of aging paradigm, or a false paradigm, as you call it.

The hallmarks paper was a great summary of the field, and if you read it, the authors are fairly cautious about it. It’s a set of hypotheses, but people might have taken the hallmarks of aging a bit too seriously – as the dogma, the Bible of the field, and that’s not what it is.

It’s a great review. But it’s not a paradigm, it does not explain aging. In fact, for decades, we’ve been in a situation where we don’t have a good mechanistic explanation of aging. Again, there’s a lot of hypotheses, and some may turn out to be right, but they may all turn out to be wrong as well, that’s a possibility.

We should focus on really understanding aging, but I feel we’ve shifted focus a bit in that regard. There’s a lot of focus on longevity interventions (and that’s exciting as well), but not so much on understanding why we age, on discovering the underlying mechanisms of aging.

Some scientists hold the opposite view – that we should focus on finding anti-aging interventions, and that might give us clues about why we age.

I would disagree with that. You can have interventions that you don’t understand how they work. We know that aspirin works – it reduces pain, inflammation – but we don’t really understand how it works. So, even if you have an intervention that extends longevity, figuring out how it works is not trivial.

I would agree that interventions, i.e., ways of changing the aging phenotype, are important for us if we want to study the mechanisms of aging. For example, caloric restriction is important because in most model systems, it extends lifespan and retards aging, which gives us a model for studying the mechanisms of aging: you’re going to have experimental groups of animals that live longer than others, and you can then ask questions like: why do these animals age at different paces?

In that regard, I do think that interventions and longevity manipulations can provide insights, because they provide this diversity in the rate of aging that can help us understand its mechanisms. But, given that we know of lots of interventions already, I don’t think you necessarily need more interventions. You can try to figure out why certain interventions work but not necessarily try to come up with more interventions. In model systems, we have already discovered different longevity manipulations.

If I go to our DrugAge database, it has over 3000 entries, over a thousand drugs. So, we already know over a thousand drugs that work (admittedly, a lot of this will be for invertebrate, not mammalian, models). So, we know quite a lot already in terms of interventions, but in the vast majority of cases, we actually don’t know how they work.

Could you elaborate on what you call in your paper the false distinction between aging and the diseases of aging?

The relationship between aging and age-related diseases has been debated for decades. I think it’s more semantics than actual biology. It depends on how you define aging. I would say that aging is a process that predisposes us to a variety of diseases. There are overlapping mechanisms between age-related diseases. For instance, cancer and neurodegenerative diseases have this overlap, although there are also mechanisms that are specific to cancer and neurodegenerative diseases that don’t relate to other age-related pathologies. The overlap is partial. I would say that if we can understand the underlying aging process that predisposes us to various diseases, that would allow us to better understand how to intervene in aging and hence in age-related diseases.

We have drugs like rapamycin that seem to alleviate many age-related pathologies. How do such drugs fit into this picture? 

On one hand, longevity drugs are a fascinating and important topic. Whether a drug can slow down human aging is another big question. As I mentioned, we know over a thousand drugs that can extend longevity (not necessarily slow aging) in model systems. So, there’s a big space in terms of longevity pharmacology that potentially can lead to clinical applications in humans, which would be fantastic.

Rapamycin fits very well into that. It’s quite well-studied. It extends lifespan in mice quite robustly. It is one of the most promising longevity drugs. We have some mechanistic understanding of rapamycin, because, well, TOR, which is “target of rapamycin”, but TOR does quite a lot of things.

I don’t think we fully understand at the mechanistic level how we go from rapamycin inhibiting TOR to retarding aging. From a clinical applications perspective, the development of TOR inhibitors and rapalogs with fewer side effects is a very exciting area of study.

Another interesting distinction I heard in one of your talks is between slowing and reversing aging. Do we have any proven interventions that actually reverse aging in complex models?

You could argue that there are some really simple model systems where we can reverse aging. You could also argue that we can reverse aging in human cells with telomerase and cellular reprogramming with Yamanaka factors, but whether that applies to whole organs is a completely different question. The jury is still out on whether we can actually reverse aging in mammals.

I think this might be a terminology issue. If you take an obese individual, and this individual goes on a diet, they will be healthier. Their risks from various age-related diseases are going to decrease because of the diet, but that doesn’t mean that this person has been rejuvenated, it just means that a lifestyle intervention improved their health.

A lot of times, you can have interventions that improve health and maybe ameliorate elements of epigenetic clocks without necessarily doing anything about the process of aging. I think we’ve had this problem in the field for quite a long time – that you can have interventions that increase longevity without necessarily retarding aging, just because they’re healthy. Do obese individuals age faster? I wouldn’t readily assume so, although some of my colleagues may disagree with me.

You can have interventions, pharmacological interventions, for instance, that extend lifespan, but don’t slow down aging in humans and even in model systems. Mice mostly die of cancer, and if you have a drug that prevents cancer, the mice are going to live longer. It doesn’t mean aging has been retarded, even though longevity has increased.

The problem we have in the field is what do those various interventions mean? Do they really slow aging, do they reverse aging, or are they just healthy? That’s why we sometimes need to be more careful about what we are claiming to have achieved.

How would you show something like aging reversal? To me, there’s still a question mark on it. I think you must have some pretty strong evidence for it – functional evidence, molecular evidence. It has to be something quite substantial to prove that you’ve reversed aging in a mammalian organism, that you’ve rejuvenated a tissue. I think that would require some pretty substantial evidence which I haven’t seen yet. Going back to your question, in complex models, such as mammals – no, I don’t think we have really reversed aging.

You probably don’t think that biomarkers of aging, such as epigenetic clocks, can give us the definitive answer, right? For instance, the thymus rejuvenation study – was there rejuvenation or not? 

In the thymus rejuvenation paper, my recollection is that they didn’t have controls, a placebo group. That’s a big problem. If you don’t have controls, who knows what else those individuals are doing? I believe they’re trying to do a bigger study. Hopefully they will do a follow-up that will validate that, but going back to epigenetic clocks, I think there’s still a lot of question marks about what they are actually measuring. We don’t understand their mechanistic or biological basis.

Just recently, there was this paper showing that patients with COVID-19 show accelerated aging if you use epigenetic clocks. That’s interesting, but maybe that means that the clocks are just looking at inflammation? That’s a possibility. If you get an infection, of course you’re sick, and your clock would go up because of the inflammation, of the immune response.

This doesn’t mean you’re aging faster or that your biological age has increased. It just means you’re sick. When you recover, you’re not infected anymore, your clock goes down, but that doesn’t show rejuvenation, it just means you don’t have an infection anymore.

I think this shows one of the problems with epigenetic clocks in that we don’t really understand what they’re measuring. If they’re measuring health, that’s interesting as well, and of course, that would inversely correlate with aging, but it’s not the same as measuring biological age, it’s measuring how healthy an individual is, which, again, can be influenced by things like infections, or being obese and then going on a diet.

We still don’t know that. I think epigenetic clocks are fascinating, and their accuracy is very impressive. I did not expect clocks to become so accurate, I have to say, I was very impressed and surprised with that, but we still don’t understand what’s the biological and molecular basis behind them.

From the bioinformatics point of view, that’s not necessarily a question we must ask ourselves. If we see a strong correlation, we can just keep using this as a tool.

We can, but I would push back here as a bioinformatician: particularly if we are using human data, we have to be very careful about the correlations we find, because with humans, you can’t really control. If you’re experimenting on animals, you can keep them in a cage, they all have similar genetics, they eat the same food.

People, on the other hand, vary a lot. You can find all kinds of correlations, like wealth correlates with longevity, and rich people tend to live longer. Does that mean that money slows down your aging process? No, it just means wealthier people tend to live healthier lives.

People from the bioinformatics field, in my experience, are mostly okay with this black box approach. It’s like, we have our big data, we see correlations, that’s all we need. 

I think that depends on the application. Epigenetic clocks are fantastic for some things. I know people use them to test interventions, to do studies in different species, studies in wild populations of animals, when they don’t know the age and they use epigenetic clocks to determine that.

In that regard, it’s a fantastic tool, and you don’t need to understand how it works, but if you are asking whether you’re rejuvenating an individual, and you’re using an epigenetic clock to answer that question, then you need to understand a bit more about this clock, about the markers and the readouts you’re using. That’s when it becomes more important.

As a scientist, I’m always curious, how does this work? What cell types are contributing to the clock? What genes, molecules, enzymes, mechanisms? If you can figure out how the clocks work, you may be more able to devise ways of affecting them. You can develop interventions. So, for certain applications, you don’t need to know how it works, but for others, biological understanding becomes important.

Let’s take genetic associations. You can find very statistically significant genetic associations, and that’s interesting, but you also want to know the molecular mechanisms behind it. Having a statistical significance association doesn’t tell you the whole story. Particularly if you want to take the next step, which is to reverse-engineer a process in order to tweak it, you must have a mechanistic understanding of that process.

That brings me to a question about your work. You have studied long-lived mammals, analyzing their genomes – animals like the bowhead whale and the naked mole rat. What have you learned from studying them? 

I see studying long-lived species and the differences between species in terms of lifespan and disease resistance as a complimentary approach. Going back to what I said at the beginning, you need variation in order to study a particular biological process. So, we have variation within species – we have caloric restriction, pharmacological interventions, different types of manipulations of aging.

That’s important: if you want to study mechanisms, if you want to try to understand a process, you want to see how we change it. If you’re studying a disease, generally you study individuals with the disease, individuals without the disease, individuals with different severity of the disease.

If you’re studying a biological process, you want to study different paces of that process. You can do it within species, which we do already, and then a complementary approach is cross-species, because mice age 20-30 times faster than human beings, while some species of turtles and fishes don’t appear to age at all. So, you have a very big spectrum of paces of aging. That gives you diversity in the process of aging that allows you to gather insights.

Of course, if you’re looking across species, the problem is that there’s a lot of other differences. If you’re studying caloric restriction in mice, there’s not that many differences between them, apart from that intervention that you’re studying. On the other hand, if you’re comparing a naked mole rat to a mouse – yes, there’s a difference in lifespan, but there’s also a lot of other differences between them. That’s the difficulty.

We and others have looked at animals like the naked mole rat, the bowhead whale, there were some great recent papers on rockfishes. We published a study last year on the Capuchin monkey, which is a small, long-lived primate. I guess the main message is that you see different genes in these species, but they tend to fall into similar categories, similar pathways.

My overall impression is that when a species evolves longevity, when it is selected for longer lifespan, species tend to use different tricks to achieve that, but these tricks tend to fall into some common themes like tumor suppressors, DNA damage responses, protein homeostasis. There are common themes for how species optimize pathways and processes to extend lifespan.

It is known that if we theoretically could eradicate cancer in humans, that would only extend lifespan by about three years. I guess that’s also true about other species. So, long-lived species must have developed several mechanisms at once, right? There are several tricks up their sleeves?

That’s right. It’s not just one trick. We’ve only really scratched the surface as far as these tricks are concerned, because there’s a lot of differences between species at the genetic level. When you do a comparison between genomes of different species, you’re going to find a lot of differences, and then you can use statistical methods to try to prioritize them.

Through different bioinformatics methods you can try to infer which genes are more important for longevity. You’ll find some clues, but really that’s just the tip of the iceberg. There’s probably a lot we don’t really know in terms of mechanisms that relate to species’ differences in aging, in lifespan. As you say, it’s not just one thing, there are going to be different types of adaptations for life extension in different species.

It’s quite remarkable. If you think about humans and chimpanzees, we are not very different on the genetic level, yet we live considerably longer than chimpanzees, we appear to age slower than them. Which genes are responsible for these differences in lifespan between humans and chimpanzees? It’s not just one thing, but it’s also not an infinite number of things. It’s a finite number, and this number cannot be too big, because there’s not that many differences between humans and chimpanzees. This is an interesting way to look at things.

I think differences in aging between species remains one of the big open questions in the field. Trying to figure it out can also help address the question why we age. We’ve really only scratched the surface as to what is the genetic basis of interspecies differences in age.

It is important to continue in that direction, right?

Absolutely. It’s an important complementary approach. In our lab, we’ve done work on different traditional model systems such as worms, we’ve done some work (mostly with collaborators) on rodents, including with the ITP of the NIA. That’s all interesting, it gives you one line of evidence, because it’s very difficult to study aging in humans.

We’re reliant on short-lived model systems, but they have their own limitations in what they may be teaching us about aging. I would say only a part of it will be relevant to humans, and we’re not sure what part.

On the other hand, we have these long-lived, disease-resistant animals like naked mole rats, whales, Capuchin monkeys, and they can provide a complimentary set of insights and information. That’s why this is important.

Have you seen this new paper that generated quite a lot of buzz, about the rate of somatic mutations and its correlation with lifespan in various species?

I think it’s a fantastic study. It really shows what has been theoretically expected but not really demonstrated in practice, which is that long-lived species accumulate somatic mutations slower than short-lived species. I think, this is primarily due to tumor suppression mechanisms. The question of how relevant this is to other aging pathologies, or aging-related physiological changes, remains to be determined. But it showcases how, if you are evolving long lifespan, one of the things you need to curb is the number of mutations. The data we’ve had so far is mostly from mice and humans, so this is quite an interesting expansion in the repertoire of species.

Another part of your work has to deal with cellular reprogramming, right?

Yes, I’m working with the company called YouthBio, which focuses on cellular reprogramming. I guess we’re not the only company focusing on cellular reprogramming nowadays. We actually were in stealth mode until recently.

Our goal is to develop gene therapies based on cellular rejuvenation and partial reprogramming with Yamanaka factors. It’s a quite interesting topic in itself. As we touched upon already, it does work on cellular models, but there’s still a lot of questions of whether it could work on whole organisms, or how we can make it safe because, of course, reprograming can induce cancer.

As to having bigger, better-funded competitors, I actually don’t see that as a problem. You don’t want to be the only company in a particular field. That’s usually a bad sign. You want to have other companies working in the same space. It shows that this is a dynamic field, a dynamic approach.

Personally, I’m used to always being the underdog. Our lab is not the best funded in the world. There are many bigger, better-funded labs than ours. I’ve always liked that role of being the dark horse and having to compete with bigger labs. I think that helps in a lot of circumstances.

So, the fact that there are much bigger companies working in the same space is not necessarily a problem. It shows the enthusiasm about this particular approach. It also means that if we can make it work, it will have a lot of value, and a big company might buy our technology and knowhow.

Calico is one particularly big and well-funded company that has been around for a long time. Do you know if they have had any breakthroughs in reprogramming?

Not really. They’ve published some nice papers, but certainly, for the amount of funding they have, although you never know what they can come up with, I would say, so far, they’ve been fairly disappointing. When there’s a company with billions of dollars, you expect it to be a leader in the field, to deliver breakthrough after breakthrough.

That’s not happened; they’re not leaders in the field. Yes, they do some nice work, but so far, they haven’t really delivered what nearly everyone expected when they started, and it’s been nearly 10 years. I think it’s fair to say that they’ve been disappointing, unless they come up with something amazing. You never know.

The question is do you maybe see their lack of progress as a sign that cellular reprogramming might be a dead end?

In terms of Altos, NewLife, and Retro, all those big companies working on cellular reprogramming – yes, it could blow up in their faces. I think the best analogy is telomerase. I remember when telomerase came out and it could prevent cellular senescence and rejuvenate cells.

In vitro, telomerase was fantastic. And people were talking about telomerase therapies, curing age-related diseases, reversing aging. It hasn’t really happened, and there are reasons for that. One, because telomerase by itself doesn’t really slow down aging. It prevents aging at the cellular senescence level, but it doesn’t prevent other aspects of aging in vivo. It also has certain risks in terms of cancer, et cetera. The point is that something that worked very well in vitro in terms of preventing aging, in this case telomerase, hasn’t so far worked in organisms, much less in the clinic.

The same could happen with cellular reprogramming. This is a possibility we have to be prepared for. On the other hand, we don’t know yet, and reprogramming has a bigger impact on cells than telomerase. I would be surprised if Yamanaka factors by themselves worked without side effects, but there may be ways of tweaking reprogramming, and that’s some of the work we’re trying to do – to make it more efficient and safer.

Now, maybe it does work, not necessarily at the level of rejuvenating human beings, but maybe it has applications in certain conditions. As I’m sure you’re aware, there’s a lot of interest in reprogramming for regenerative medicine – not rejuvenation, but just regenerative medicine in patients with spinal cord injuries or other conditions that may benefit from reprogramming.

Maybe in ovarian aging.

Exactly. So, there may be specific applications. Even if it doesn’t pan out, if we cannot reverse aging in human beings with programming, maybe it will still have some clinical applications, as a lot of companies even outside of the field of aging are already exploring.

The fact that not just Altos, but several big companies are investing in the space means we’re probably going to have an answer to it – whether it works or not. This would be very beneficial because even if it doesn’t work, if reprogramming is a dead end and we’re just wasting our time, we want to know about it sooner than later, because we want to move on to other things.

We’d also want to have at least one single breakthrough rather sooner than later, so to not scare off the investors.

Yes, absolutely. We need a success story in the field of aging. We still don’t have one. We don’t have a therapy that actually works in human beings. I’m somewhat skeptical that reprogramming is going to be that first success story, because I think the pharmacological approach has better chances as folks have been doing drug development for a long time.

There’s a bunch of companies working on pharmacological approaches to aging, doing clinical trials for senolytics, for caloric restriction mimetics, and some of those approaches might work. Most of them will fail, but hopefully at least one will work. If we can have a success from a pharmacological approach, that would be fantastic.

I would disagree however with your assumption that without a success story, the investors are going to be disappointed. Why? Because people are not getting younger, that’s the bottom line. The incidence of age-related diseases is going to increase. The graying of the population worldwide is going to continue. That’s why we’re going to have more and more motivation to intervene.

We had, I would say, quite a disappointment some years back with resveratrol. You might remember the resveratrol debacle. There was a lot of interest, they were purchased for a huge sum, a lot of excitement, but then it didn’t work out.

You might have expected a big disappointment to hurt the field, but that’s not what happened at all, quite the opposite. The field has flourished. So, we can have some flops. However, if we have a lot of them, that might be an issue, because there are different types of investors. There are investors that believe in the philosophy of life extension, of reversing or at least retarding aging. Such investors are going to stay, no matter the difficulties.

You have a different class of investors that appeared more recently, and they see aging and the longevity industry as a way to make money. If there’s a lot of flops in the field, if many companies fail in a short period of time, I can see those investors going elsewhere.

I agree about the “gray tsunami”. Maybe in this case, governments should step in much more massively, increasing the amount of spending dramatically, because it’s still laughingly small?

Absolutely, but you’re preaching to the converted. We need more government funding for aging. In a way, government funding is the main funding we need because that’s the big money. I think the NIA (National Institute of Aging) budget is around $4 billion a year. It’s like an Altos Labs every year. Most of it goes to Alzheimer’s disease, not to the biology of aging. The biology of aging gets a tiny fraction of that. That’s what we need, we need billions of dollars every year from the government.

Having steady government funding allows you to do blue skies research, to address the basic questions we were talking about, like why we age? No company is going to say: Pedro, here’s a lot of money for you to tell us why we age! That’s not going to happen.

For those kinds of basic biology projects, we’re still relying on government funding and charities. The major driver of science discovery is funding fundamental science, which leads to a lot to startups and ultimately clinical applications. But we need that fundamental science to begin with, and it has to be funded by the government and charities.

I really liked your Twitter description that describes you as a “scientist planning to live forever”. I don’t know how serious you are about that, but I really like how unapologetic you are. However, that’s not a popular position today. How would you defend it?

That’s a good question. Interestingly, there’s been a couple of people in recent times telling me that they like my Twitter description. It also means that there are some people who don’t like it, they just don’t mention it to me.

So, first of all, I think sometimes you have to compromise on tactical decisions – on a grant application, in a talk. But don’t compromise on strategy. If your goal is to cure aging, then say it, don’t compromise on it.

When I started in the field, my PhD supervisor Olivier Toussaint, who sadly passed away a few years ago, asked me: do you really want to be going around telling everybody your goal is to cure aging? I said, yes, because that’s the goal. I could pretend not to, like some people do.

I know scientists in the field whose goal is to cure aging who don’t talk about it because they’re afraid they’re going to miss opportunities, and maybe I’ve missed opportunities because of that, I don’t know. But in the end, that’s the goal and there’s no point in faking it.

That doesn’t mean that everyone is going to agree with me or that this is the best way of selling the field. And we’ve had some discussions about it. I think we need to sell the field in different ways to different people. And there are other ways – to call it geroscience, to focus on healthspan. For certain audiences, that’s going to work better than saying we’re going to try to cure aging.

As I said, sometimes you’ll have to compromise on tactical decisions. Ultimately, what I want to do is to cure aging. And, if people don’t like it, then I’m happy to discuss it.

It’s not like we’re making biological weapons. We’re not doing anything wrong. We’re just trying to eliminate age-related diseases – to prevent people from having Alzheimer’s, cancer, cardiovascular diseases. There’s nothing wrong with that.

Having said that, I don’t think we’re going to cure aging in my lifetime. After all, we don’t have anything that works yet. As you may know, I’ve done some work in cryopreservation as well. Here too, I’ve been open about it. I think human cryopreservation is achievable. And it’s important to keep your long-term goals in mind.

It’s about what you want to achieve in your life. Most of my friends at school wanted to be football players. I was never good enough to be a football player, otherwise I would have wanted to be one.

From a very early age, I wanted to cure aging. I thought that the main thing in life is being healthy, and no matter how much money you have, you’re not going to stay healthy if you’re aging. So, I dreamed about working on this topic and that’s what I’m doing now. Even if we’re not going to cure aging in my life, at least we’ll give it our best shot.

Gene pill

Using an Endemic Virus as a Gene Therapy for Life Extension

In a study printed in PNAS, researchers have shown that telomerase reverse transcriptase (TERT) can be given to cells in living mice through a viral vector, taking the idea of life-extending gene therapies from science fiction to reality.

Why a cytomegalovirus?

The human cytomegalovirus (CMV) is widely known as an endemic virus that, while usually asymptomatic, is known to cause with harmful effects in babies and older adults. However, some of its properties make this virus suitable for delivering gene therapies. As cytomegaloviruses can carry large genetic payloads and don’t overwrite the DNA of their host cells [1], replacing the genes of these viruses with beneficial DNA may be safer than approaches with more potential off-target effects; development in this area is ongoing, and a phase 1 human clinical trial has already been conducted [2].

The role of TERT

Gradually shrinking telomeres lead cells to lose their ability to divide. In ordinary cells, this is known as the Hayflick limit. Stem cells, whose purpose is to grow organisms and replace lost bodily cells, naturally produce TERT in order to restore these telomeres. Aging organisms gradually lose this ability, and previous research has shown that gene therapies that restore TERT can extend lifespan in mice [3].

Combining CMV gene therapies with TERT expression, the researchers hypothesized, might be a way to safely conduct such a gene therapy in human beings. The researchers also chose to try this approach with follistatin (FST), a compound that promotes muscle growth.

An easy-to-administer therapy with substantial effects

The researchers developed two forms of administration of their mouse cytomegalovirus (MCMV): through an injection and through the nose. Both of these forms were almost exactly identical in effectiveness throughout this study.

The TERT-receiving groups had their TERT production doubled by the end of the first week after injection, after which it tapered back to baseline by day 25. This shows that, while effective, CMV gene therapy does not have a permanent effect.

The lifespan portion of this experiment was conducted on standard female Black 6 mice beginning at 18 months of age, which is approximately equivalent to 56 years old for a human. Each group contained nine mice, one of which was sacrificed early for tissue analysis, and the mice were given the treatment steadily except for an interval between 29 and 32 months of age.

The lifespan effects were clear: mice given FST through MCMV lived for nearly three years, nine months longer than the control groups, while mice that received TERT lived for about two months longer than the FST group. One mouse lived for a full 41.2 months, which is approximately equivalent to a human supercentenarian. All of the control groups’ mice had died of age-related causes before a single FST or TERT mouse did.

Telomeres are effectively extended

While not all tissues were affected equally, owing to the differences in the genes and the peculiarities with the CMV vector, both FST and TERT effectively promoted their respective genes within tissue according to an mRNA analysis. Staining and then examining telomeres directly showed that the average telomere length in the TERT group was tripled from baseline, reaching nearly to the level of younger animals in all of the organs studied, including the brain, heart, muscle, kidney, lung, and liver.

Physical effects

The researchers also examined the mice physically, seeing what the biochemical changes did to their morphology. The FST and TERT groups were better able to handle glucose than the control groups. Body weights were fairly similar at 18 months, but the FST groups grew much larger than the others. The control groups’ body weights decreased as they died of age-related diseases, which occurred more slowly in the FST and TERT groups.

At 24 months of age, the FST and TERT mice were many times more efficient in crossing a beam than the control groups. Interestingly, their muscle mitochondria were also much better preserved, suggesting a relationship between telomere attrition and another hallmark of aging, mitochondrial dysfunction.

Conclusion

The researchers did not combine FST and TERT into a single gene therapy, leaving it an open question as to whether such a combination would be more effective in lifespan extension than either one individually.

While this is not a human trial, the stark results shown in this lifespan trial seem to make it a prime candidate. However, aging is not a measurable endpoint in human trials; rather, there must be some measurable physical effect that can be monitored and judged, to a level of statistical significance, over the length of the trial. Biomarkers, such as for frailty and mitochondrial function, may be of help in this respect. If the results in mice can be recapitulated in people, this approach may, in fact, be a safe and effective gene therapy for life extension.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Borst, E. M., & Messerle, M. (2003). Construction of a cytomegalovirus-based amplicon: a vector with a unique transfer capacity. Human gene therapy, 14(10), 959-970.

[2] Adler, S. P., Lewis, N., Conlon, A., Christiansen, M. P., Al-Ibrahim, M., Rupp, R., … & V160-001 Study Group. (2019). Phase 1 clinical trial of a conditionally replication-defective human cytomegalovirus (CMV) vaccine in CMV-seronegative subjects. The Journal of infectious diseases, 220(3), 411-419.

[3] de Jesus, B. B., Vera, E., Schneeberger, K., Tejera, A. M., Ayuso, E., Bosch, F., & Blasco, M. A. (2012). Telomerase gene therapy in adult and old mice delays aging and increases longevity without increasing cancer. EMBO Mol Med 4: 691–704.

Senior man walking

Walking Pace Correlated with Increased Telomere Length

Publishing in Nature Communications, Dr. Tom Yate, Dr. Neliesh J. Samani, and colleagues used data from approximately 400,000 people in the UK Biobank in order to examine the relationship between walking pace and telomere length.

Previous evidence suggests that increased physical activity and cardiorespiratory fitness is associated with longer telomere length [1,2]. However, previous research linking lifestyle factors and telomere length are small and observational. The authors of this study sought to determine the association between self-reported walking pace and the telomere length of specific white blood cells known as leukocytes.

Study participants

The participants were an average of 56.5 years old, with a mean BMI of 27.2. 54% of the participants were female, and 95% of the participants were white. Descriptive statistical differences were seen between the slow, average, and brisk walkers. When compared to the slow walkers, the brisk walkers were slightly younger, more likely to have never smoked, were less likely to have mobility limitations and were less likely to be on cholesterol and/or blood pressure medication.

Slow walkers also reported engaging in less physical activity, had higher rates of obesity, and were more likely to live in a deprived living situation as measured by a multiple deprivation index when compared to the average and brisk walking groups. Accelerometer data was mostly comparable between the walking pace groups.

Walking pace was associated with telomere length 

Compared to the slow walkers, the average and brisk walkers had significantly longer telomere length. After adjusting for potential confounding factors, the associations for average and brisk walkers were decreased. Factoring in self-reported total physical activity and BMI did not alter these results.

More steps were associated with telomere length 

A secondary analysis performed on a subset of 86,002 participants utilized accelerometer data. Results showed that daily physical activity at a higher intensity was associated with longer telomere length. These associations remained even after adjusting for covariates. However, this association was not seen when examining total physical activity. The authors note how self-reported data for physical activity can have limitations, but nonetheless, the accelerometer subset data helped support the findings for walking pace.

Genomic analysis showed walking pace causally associated with telomere length

Using bi-directional Mendelian randomization analysis, no statistical association was shown between telomere length and walking pace genome-wide association (GWAS), regardless of BMI. However, when examined in the other direction, evidence suggested that walking pace is causally associated with telomere length. The authors mention that though Mendelian randomization can help determine causality, such results should be interpreted with caution.

Conclusion

This study implies that movement such as fast walking is associated with longer telomeres. For people without leg mobility issues, this could potentially be a promising intervention to improve healthspan and lifespan. The participants in this study were predominately white and healthy, so its results may not be applicable to all demographic groups.

While it does not conclusively prove causation, this study adds to a growing body of evidence that lifestyle factors affect telomere length. It will be exciting to see future research in this area.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Mundstock, E., Zatti, H., Louzada, F. M., Oliveira, S. G., Guma, F. T., Paris, M. M., Rueda, A. B., Machado, D. G., Stein, R. T., Jones, M. H., Sarria, E. E., Barbé-Tuana, F. M., & Mattiello, R. (2015). Effects of physical activity in telomere length: Systematic review and meta-analysis. Ageing research reviews, 22, 72–80. https://doi.org/10.1016/j.arr.2015.02.004

[2] Marques, A., Gouveira, É. R., Peralta, M., Martins, J., Venturini, J., Henriques-Neto, D., & Sarmento, H. (2020). Cardiorespiratory fitness and telomere length: a systematic review. Journal of sports sciences, 38(14), 1690–1697. https://doi.org/10.1080/02640414.2020.1754739

Drug combination

Drug Cocktail Delays Aging in Mice

Scientists have shown that a combination of rapamycin, acarbose, and phenylbutyrate has a synergetic rejuvenation effect when administered to 20-month-old mice for three months [1].

Fighting on multiple fronts

In this paper, the authors argue that to tackle such a multifaced process as aging, it might be beneficial to target different molecular pathways using several compounds. Therefore, they selected three drugs that had previously demonstrated anti-aging effects on their own: rapamycin, an antibiotic that inhibits mTOR signaling; acarbose, an anti-diabetic medication; and phenylbutyrate, a naturally occurring metabolite and a popular treatment for urea cycle disorders.

The researchers expected these compounds to have a synergistic effect that is greater than simply adding up their individual effects, and impressively, that’s exactly what this study has revealed.

In order to make the study results more translatable to humans, instead of treating young mice through their lifespans, the researchers applied the treatment to 20-month-old mice and limited the treatment to three months. First, the researchers compared the effect of a full-dose cocktail, containing each drug at a dose used in previous studies, and a half-dose cocktail.

Mice in both groups demonstrated decreased cognitive impairment compared to controls. However, the full-dose cocktail was more effective at improving other physical functions and organ rejuvenation, so it was used for further analysis. Along with a control group, the researchers included groups of mice treated with individual drugs.

Physiological improvements

The first major change the researchers in the full-dose cocktail group was weight loss along with decreased body fat mass. This effect seems to be due to acarbose mimicking caloric restriction.

Next, the researchers performed a series of behavioral tests regarding the physiological performance of old mice. Cocktail-treated mice outperformed control mice in all three tests: walking ability, hand grip, and cognitive function. Interestingly, mice in the rapamycin-only group also demonstrated improved cognition compared to controls, suggesting a neuroprotective effect of the drug.

Organ rejuvenation

To determine the organ-specific effects of the treatments, the researchers used a geropathology system that involved organ dissection, staining, and pathology-based grading. They calculated the lesion scores of the heart, lungs, liver and kidneys. The drug cocktail was effective at decreasing lesions in all of the organs and, in general, more so than any individual drug.

However, rapamycin also effectively decreased lesions in the kidney. This organ was shown to have extensive inflammation in the old control group’s tissue samples, prompting further investigation. The researchers then measured the expression of inflammatory cytokines in the kidney and showed that the drug cocktail decreased their expression in old mice, bringing them down to the level of young animals and demonstrating the anti-inflammatory nature of the drug combination.

Sex- and strain-specific differences

This study design included separate analyses of male and female mice, and some differences were observed. Drug cocktail-induced weight loss was not seen in females after three months of treatment, and female mice in the rapamycin-only and acarbose-only groups gained weight, unlike males.

Female mice showed improved grip strength when treated with only acarbose, which was not the case for males. Rapamycin was as effective as the drug combination at decreasing age-associated lesions in the hearts and livers of females but not males. However, acarbose and phenylbutyrate were effective in the kidneys of males but not females.

To test strain-specific drug responses, the researchers validated their results on a second strain of mice used exclusively in lifespan studies. In this part of the research, only the drug cocktail and the control groups were included. In this strain, both female and male mice treated with the drug cocktail lost a significant amount of weight over the three-month period.

Surprisingly, the drug combination did not combat cognitive impairment in these old mice, while the walking speed improved only in males. The drug cocktail was also ineffective in reducing liver and lung lesions in female and male mice, respectively.

Abstract

Pharmaceutical intervention of aging requires targeting multiple pathways, thus there is rationale to test combinations of drugs targeting different but overlapping processes. In order to determine if combining drugs shown to extend lifespan and healthy aging in mice would have greater impact than any individual drug, a cocktail diet containing 14 ppm rapamycin, 1000 ppm acarbose, and 1000 ppm phenylbutyrate was fed to 20-month-old C57BL/6 and HET3 4-way cross mice of both sexes for three months. Mice treated with the cocktail showed a sex and strain-dependent phenotype consistent with healthy aging including decreased body fat, improved cognition, increased strength and endurance, and decreased age-related pathology compared to mice treated with individual drugs or control. The severity of age-related lesions in heart, lungs, liver, and kidney was consistently decreased in mice treated with the cocktail compared to mice treated with individual drugs or control, suggesting an interactive advantage of the three drugs. This study shows that a combination of three drugs, each previously shown to enhance lifespan and health span in mice, is able to delay aging phenotypes in middle-aged mice more effectively than any individual drug in the cocktail over a 3-month treatment period.

Conclusion

This promising study is yet another demonstration of an effective approach that targets multiple pathways. Drug synergy has previously been shown to extend healthy lifespan in C. elegans [2]. Although this study did not study lifespan extension, it clearly showed that this cocktail reverses several aspects of age-related pathologies in mice.

In addition to demonstrating that the drug cocktail is more beneficial than each of its individual components, the study highlights its different effects between mice of different sexes and strains. Therefore, metabolic responses that are dependent on sex and genetic background will have to be taken into account when determining if such a cocktail is effective in people.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Jiang, Z. et al. Short term treatment with a cocktail of rapamycin, acarbose and phenylbutyrate delays aging phenotypes in mice. Sci. Rep. 12, 7300 (2022).

[2] Admasu, T. D. et al. Drug Synergy Slows Aging and Improves Healthspan through IGF and SREBP Lipid Signaling. Dev. Cell 47, 67–79.e5 (2018).

Immunotherapy

NMN Boosts Effectiveness of Immunotherapy in Mice

In a pre-print paper, scientists have shown that treatment with NMN increases the survival and anti-cancer efficacy of CAR-T cells [1].

The problem with immunotherapy

T cells are a central element of the adaptive immune system, and some of them can be cytotoxic: they have the ability to kill other cells. This lets us get rid of cells that are infected with pathogens, such as viruses and bacteria, along with cells that have become cancerous. However, some cancer cells have ways to greatly reduce the effectiveness of cytotoxic T-cells by causing their dysfunction and exhaustion [2].

Scientists have been trying to overcome this problem by genetically modifying T cells to express receptors specifically tuned to recognize various cancers. These are chimeric antigen receptors (CARs), and CAR-T cell therapies are already being used against some types of cancer.

In CAR-T cell-based immunotherapy, a bunch of T cells are procured from the patient’s blood, genetically engineered to express the relevant CAR, and injected back into the patient’s body. Unfortunately, CAR-T therapy is still mostly limited to blood cancers, where it can work marvelously, though not in all patients (CAR-T therapy with no additional treatment has a success rate of 30-40% for lasting remissions). Solid tumors have been much harder to crack because their microenvironment still quickly renders most CAR-T cells dysfunctional.

NMN keeps CAR-Ts healthy and angry

Therefore, it is extremely important to increase the resilience of CAR-T cells, and a group of scientists might have found a way to do so via a molecule that is popular in the longevity field: nicotinamide mononucleotide (NMN).

NMN is a precursor to NAD+, a co-enzyme that carries electrons for redox (reduction/oxidation) reactions. It plays an important role in mitochondrial energy production and other biological processes. The age-related decline of NAD+ levels has been linked to various diseases of aging, including cancer [3], while boosting NAD+ levels through NMN supplementation is known to produce multiple health benefits in mice and humans [4]. Simply speaking, an increase in NAD+ invigorates cells, which is exactly what the authors of this new study had been looking for.

The researchers experimented on the most popular CAR-T cells that express the receptor CD19 and are used against several types of blood cancer, such as B-cell acute lymphoblastic leukemia. After being treated with a dose of NMN, the cells were co-cultured with NALM6 cells, a model of leukemia. NMN-treated T cells showed a superior rate of proliferation and remained active and cytotoxic long after the controls died.

The exhaustion of T cells that prevents them from attacking cancer cells manifests itself, in large part, in cellular senescence and increased apoptosis. In NMN-treated cells, the levels of the most popular senescence marker, ß-galactosidase, were greatly reduced compared to controls. The treated cells also showed greater telomerase activity, which is associated with reduced senescence. Apoptosis markers demonstrated a remarkable decline as well.

The treatment also changed the gene expression profile of the cells. Transcriptomic analysis showed an increased activity of proliferation-related genes and a decreased activity of senescence-inducing genes. Genes responsible for immune response got a boost as well.

NAD+ mediates the activity of sirtuins – an evolutionarily conserved family of proteins that play several important roles related to stress response and longevity. The protein Sirt1, a well-known anti-senescence and proliferation-promoting factor, was particularly upregulated by NMN. The researchers suggest that NMN benefits T cells mostly via the Sirt1 pathway.

The treatment increased the levels of pro-cytotoxic factors, including interferon-gamma (IFN-γ) and downregulated some pro-inflammatory factors such as IL-6, suggesting that NMN treatment can reduce the inflammatory response commonly triggered by CAR-T therapy.

NMN promotes survival in mice

Finally, the scientists tested NMN-CAR-T cells in a mouse model of B-cell lymphoid leukemia. While treatment with regular CAR-T cells also showed some effect, NMN-CAR-T cells caused a statistically significant additional improvement in cancer burden and median survival time.

Since NAD+ mediates many biological processes, NAD+ therapies are being actively explored for various conditions. However, scientists have encountered some delivery problems in vivo. For instance, another NAD+ precursor, nicotinamide riboside (NR), did not extend lifespan in mice in the Intervention Testing Program (ITP) trials because it failed to raise NAD+ levels. Since CAR-T therapy is based on altering and culturing cells in vitro, no such delivery issues are expected in this case; cells can be just directly treated with NMN. This also means that the experiment might be easily translatable to humans, as its design might be close to the actual therapy, and NMN is known to be very safe.

Conclusion

Since low fitness and survivability of T cells seem to be a major hurdle for CAR-T cell immunotherapies, especially for treating solid tumors, the results of this study, if it stands the test of a peer review, might be very influential. It also highlights, yet again, the importance of NAD+ for longevity.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Yu, Z., Tong, S., Zhang, C., Bai, Y., An, Z., Xu, C., … & Zhong, X. (2022). Nicotinamide mononucleotide enhances the efficacy and persistence of CD19 CAR-T cells via NAD+–Sirt1 axis.

[2] Zhang, Z., Liu, S., Zhang, B., Qiao, L., Zhang, Y., & Zhang, Y. (2020). T cell dysfunction and exhaustion in cancer. Frontiers in cell and developmental biology8, 17.

[3] Garrido, Amanda, and Nabil Djouder. “NAD+ deficits in age-related diseases and cancer.” Trends in cancer 3, no. 8 (2017): 593-610.

[4] Shade, C. (2020). The Science Behind NMN–A Stable, Reliable NAD+ Activator and Anti-Aging Molecule. Integrative Medicine: A Clinician’s Journal19(1), 12.

Mouse eating

The Gut Microbiome Affects the Brain, Eyes, and Gut in Mice

Publishing in Microbiome, a team of researchers has ascertained multiple physical effects of aging gut flora in mice.

Antibiotics and fecal transfers

The researchers used three groups of mice: young (3 months), old (18 months), and aged (24 months). Young and old groups were divided into a control group, an antibiotics group, and three recipient groups of gut flora from each of the different ages of mice. Aged mice, due to their limited availability, only had a control group and a recipient group of young gut flora.

The species of bacteria were analyzed, and the researchers found that young gut flora in mice is abundant in bifidiobacteria, while older mice have more prevotella species. However, the antibiotics that were used to allow for this fecal replacement also had strong influences on the bacterial composition of these animals.

Effects on the brain, eyes, and gut

Microglia that expressed Iba-1, a biomarker of inflammation and macrophage activity, were measured in the cortex and corpus callosum. Young mice that received old gut flora had increased levels of this marker, but not to statistical significance; young mice that received aged gut flora had their levels increased well beyond this threshold.

Old mice seemed to have their brain inflammation reduced by a simple treatment of antibiotics, as both the antibiotics group and the old mice receiving old gut flora had Iba-1 levels below baseline; however, young gut flora decreased Iba-1 significantly below baseline, and aged gut flora increased it.

The data in aged mice, although limited in scope, were very clear: aged mice receiving young bacteria had much less Iba-1 brain inflammation than the control group.

Retinal data were also promising. Previous research has shown that gut bacteria have something to do with the development of age-related macular degeneration (AMD) [1]. The researchers show, for the first time, that the gut microbiome significantly affects the functional visual protein RPE65, flaws in which have been implicated in the development of AMD [2]. Young mice given old or aged microbiota had their levels of this protein significantly decreased, while aged mice given young microbiota had the reverse occur.

Gut markers were also promising. The epithelial barrier protecting the intestines from their contents can be eroded, and this phenomenon is known as leaky gut. A critical marker of this damage, I-FABP, was increased in mice receiving aged gut flora and similarly decreased in aged mice receiving young gut flora; the two groups had nearly completely switched places on the chart, suggesting that gut flora are almost entirely responsible for gut health, at least in mice. LPS-binding protein, another indicator of bacterial leaks into the gut, had very similar results.

A lack of behavioral effects

Unfortunately, while the brain biomarkers were significant, the behavioral study did not yield any significant results. The object recognition test that the researchers chose showed basically no differences whatsoever between aged mice at baseline and aged mice receiving youthful gut flora. The researchers mentioned two previous studies on this subject. One of them showed that young mice receiving aged gut flora had significant impairments [3], and the other suggested that behavioral changes only become visible over the longer term [4].

Conclusion

While altering the gut microbiome is by no means a panacea, it is one aspect of aging that is relatively easy to influence without gene therapies or even surgery. This paper adds to a broad body of research showing the relationship between gut bacteria and inflammation in other organs. Its potential influence on the development of eye diseases bears further investigation, and the effects on leaky gut were extremely promising. However, it is clearly not a quick fix for long-term issues, even in mice.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Zinkernagel, M. S., Zysset-Burri, D. C., Keller, I., Berger, L. E., Leichtle, A. B., Largiadèr, C. R., … & Wolf, S. (2017). Association of the intestinal microbiome with the development of neovascular age-related macular degeneration. Scientific reports, 7(1), 1-9.

[2] Cai, X., Conley, S. M., & Naash, M. I. (2009). RPE65: role in the visual cycle, human retinal disease, and gene therapy. Ophthalmic genetics, 30(2), 57-62.

[3] D’Amato, A., Di Cesare Mannelli, L., Lucarini, E., Man, A. L., Le Gall, G., Branca, J. J., … & Nicoletti, C. (2020). Faecal microbiota transplant from aged donor mice affects spatial learning and memory via modulating hippocampal synaptic plasticity-and neurotransmission-related proteins in young recipients. Microbiome, 8(1), 1-19.

[4] Boehme, M., Guzzetta, K. E., Bastiaanssen, T. F., Van De Wouw, M., Moloney, G. M., Gual-Grau, A., … & Cryan, J. F. (2021). Microbiota from young mice counteracts selective age-associated behavioral deficits. Nature Aging, 1(8), 666-676.

CBD oil

Cannabidiol Increases Lifespan and Healthspan in Worms

Scientists have shown that an active ingredient of cannabis significantly upregulates autophagy, extending both lifespan and healthspan in C. elegans nematode worms.

Two of the most well-known components of marijuana are tetrahydrocannabinol (THC) and cannabidiol (CBD). They have the same atomic composition, but differ in structure and in some of their qualities. THC is what makes you high, while CBD can even dampen THC’s effect. Though both THC and CBD seem to have some beneficial qualities, THC is also responsible for the deleterious effects that heavy users might experience, such as mood swings, cognitive decline, and even changes in brain composition [2].

CBD, on the other hand, is considered benign and possesses antipsychotic, pro-cognitive, anti-inflammatory, anti-seizure, and antioxidant properties. In June 2018, the FDA approved Epidolex, the first CBD-based prescription medication, for rare forms of epilepsy, and later for the treatment of seizures associated with tuberous sclerosis complex (TSC). However, the research into both compounds is still in its infancy.

In this new study, scientists dived deeper into the workings of CBD using the nematode worm Caenorhabditis elegans (C. elegans), which is considered a good model for initial studies, including in geroscience. C. elegans was the first multi-cellular organism to have its lifespan extended by gene editing.

Increase in autophagy

Previous research has shown that CBD can increase lifespan in C. elegans and zebrafish [3], but the mechanism had remained unknown. Another study found that CBD induces autophagy in cultured neuronal cells [4]. In this new study, the researchers attempted to investigate the relationship between these two effects.

Autophagy is the process of clearing away various cellular debris, such as misfolded proteins and dysfunctional organelles. Unsurprisingly, this maintenance system appears to be very important for health and longevity in numerous model organisms and in humans.

The CBD treatment greatly increased autophagic activity in several tissues and cell types, most drastically in neurons (by 78%). The researchers then validated those findings in vitro on several types of cells, including mouse primary hippocampal neurons. Importantly, impaired autophagy in the brain is considered a major cause of Alzheimer’s disease [5].

Autophagy is a complex process that can be crippled at several stages. Autophagic flux is a specific measure of how fast the unwanted molecular stuff is being degraded, and it quantifies overall “autophagic health”. In the experiments, CBD drastically increased autophagic flux both in vivo and in vitro.

Long live the worm

Worms on CBD also lived significantly longer than controls. However, numerous compounds and interventions have been shown to increase the short lifespan of C. elegans by much larger margins. Still, a significant lifespan increase is a good indication that the treatment made the worms healthier.

The researchers also measured the worms’ healthspan. Many interventions that prolong lifespan in C. elegans often lead to functional impairment, such as decreased motility. Three popular health metrics in C. elegans that decline with age are pharyngeal pumping rate, reproductive capacity, and locomotion, and all three were significantly restored, rather than impaired, by CBD treatment.

With age, neurons in C. elegans undergo morphological changes, acquiring irregular shape. The CBD treatment was able to mitigate the number of irregularly shaped neurons, though not to youthful levels. CBD also led to an increase in neurite length and spine density, two metrics of neuronal health, in mouse neurons.

To determine whether the increase in lifespan was due to more autophagic activity, the researchers knocked out three different autophagy-related genes, sqst-1, vps-34, and bec-1, using RNA interference. In two of the cases, the knockout shortened the worms’ lifespan, and in all three cases, subsequent CBD treatment failed to extend it, confirming that autophagy is essential for CBD-mediated increase in lifespan.

SIRT1’s ortholog mediates the effect

The gene SIRT1 has been a popular object of study in geroscience. One of its roles is a mediator of autophagy [6]. In C. elegans, there is no gene homologous (identical) to SIRT1, but there is an ortholog – a gene with a different sequence but a similar function – called sir-2.1. The knockout of sir-2.1 mostly blocked the beneficial effects of CBD on autophagy and on neuronal morphology. Mice, on the other hand, do have their own SIRT1 gene, and its knockout in mouse neurons also obliterated many benefits of CBD, pointing at a crucial role of SIRT1 in mediating CBD-induced effects.

Conclusion

Its origin aside, CBD is an intriguing compound that might have numerous beneficial qualities. This study expands our understanding of CBD’s effects, linking them to autophagy, an important process that keeps popping up on geroscientists’ radars. It is encouraging that CBD demonstrates the strongest pro-autophagy effect in neurons, making it a potential anti-Alzheimer’s drug. Obviously, the fact that CBD increases autophagy in worms does not mean that smoking weed makes humans healthier. Our advice would be to wait for human trials before attempting to receive related effects from CBD products.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Wang, Z., Zheng, P., Chen, X., Xie, Y., Weston-Green, K., Solowij, N., … & Huang, X. F. (2022). Cannabidiol induces autophagy and improves neuronal health associated with SIRT1 mediated longevity. GeroScience, 1-20.

[2] Sohn, E. (2019). Weighing the dangers of cannabis. Nature572(7771), S16-S16.

[3] Pandelides, Z., Thornton, C., Faruque, A. S., Whitehead, A. P., Willett, K. L., & Ashpole, N. M. (2020). Developmental exposure to cannabidiol (CBD) alters longevity and health span of zebrafish (Danio rerio). Geroscience42(2), 785-800.

[4] Vrechi, T. A., Leão, A. H., Morais, I., Abílio, V. C., Zuardi, A. W., Hallak, J. E. C., … & Pereira, G. J. (2021). Cannabidiol induces autophagy via ERK1/2 activation in neural cells. Scientific reports11(1), 1-13.

[5] Liu, J., & Li, L. (2019). Targeting autophagy for the treatment of Alzheimer’s disease: challenges and opportunities. Frontiers in molecular neuroscience, 203.

[6] Xu, C., Wang, L., Fozouni, P., Evjen, G., Chandra, V., Jiang, J., … & Berger, S. L. (2020). SIRT1 is downregulated by autophagy in senescence and ageing. Nature cell biology22(10), 1170-1179.

Naked Mole Rat Side

Why The Skin of Naked Mole Rats Ages Slowly

A study published in Aging has shown that the skin of the naked mole rat retains nearly all of its physical and biochemical properties as these animals chronologically age, providing new insight into how and why these animals live so long.

Wrinkly, but not like humans wrinkle

With a wrinkly, largely hairless body, the naked mole rat is well-known for having an “old man” appearance, but this is pure anthropomorphism; even young naked mole rats look like this. Naked mole rats do not live as long as people; they have been reported to live 37 years in captivity and roughly half that long in the wild. However, this mouse-sized animal has also not been reported to increase in mortality with aging, which sets them apart from nearly all other animals and makes them a gerontological curiosity [1].

This lack of conventional aging has been shown in the skin. In this study, the researchers show that standard biological changes of the skin do not occur with aging. Staining for multiple compounds that normally change with age in mammalian skin, including the senescence marker p16, revealed no differences between young and old animals.

The only significant difference was the increased thickness of the epidermis, the outer layer of the skin, with age; the inner layer, the dermis, was not significantly affected. However, this layer stops thickening after middle age, and the researchers have noted the existence of a sixth sub-layer that appears in middle age and does not exist in youth.

Wound healing, which is normally slower in aged animals, was not slower in naked mole rats. In fact, wounds to the skin of middle-aged naked mole rats seemed to disappear slightly, but not significantly, more quickly than their youthful counterparts.

Examining individual cell sub-populations

The researchers looked at specific cell types, examining 10,232 individual cells of the epidermis. 11 different gene clusters that determine cellular identity were identified in total. Three skin layers were determined, and each layer was found to be identifiable by specific genes; the inner (basal) layer expresses Krt14, the middle (suprabasal) layer expresses Krt10, and the outer (corneal) layer expresses Lor.

The researchers then examined cells from middle-aged and young animals to determine the differences between their cells. Aggregate differences in gene expression between young and old animals were statistically insignificant. Cell types were almost completely identical, and cell layer markers were barely distinguishable.

Youthful animals seemed to be more biased towards the corneal layers, while older animals had more basal expression, which matches the results found in the physical examination. Going through cellular progression over time, the researchers found no fundamental differences between young and middle-aged animals. Genes related to reactive oxygen species, which normally increase with age in other species, were not found to increase in naked mole rats.

One of the few notable differences the researchers found was a four-fold increase in lgfbp3 expression in one specific gene cluster of basal cells. This gene modulates the homeostasis of epidermal tissue and is predominantly expressed by stem cells. Five genes related to immune expression were also found to be significantly upregulated.

Conclusion

With its focus on cellular gene expression, this study provides novel and potentially useful insights into how these animals do and do not age. The extra sub-layer of skin may reflect a programmed process rather than damage over time.

One potential flaw of this study is that neither cross-linked collagen nor advanced glycation end-products were mentioned; further investigation may reveal that these compounds contribute to the increased thickness in epidermis, but this might not be the case.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future.

Literature

[1] Ruby, J. G., Smith, M., & Buffenstein, R. (2018). Naked mole-rat mortality rates defy Gompertzian laws by not increasing with age. elife, 7, e31157.