A Non-Invasive Biomarker to Track Cellular Senescence

Being able to test the efficacy of senolytics through urine would make clinical trials easier.


urine testurine test

A lipid metabolite could serve as a novel biomarker to test the performance of senolytics, according to a new study [1]. Such a biomarker can be detected from blood or urine, allowing for non-invasive testing, and experiments have shown that it plays a functional role in cellular senescence.

To do this, we need your support. Your charitable contribution tranforms into rejuvenation research, news, shows, and more. Will you help?

Slowing down to stay safe

Cellular senescence is a response to damage or stress in which cells stop dividing and undergo a range of other changes. Senescent cells also secrete a cocktail known as the senescence-associated secretory phenotype (SASP), which includes inflammatory factors such as cytokines as well as growth hormones, proteases, and other molecules. The SASP has a variety of local and systemic effects, and it is involved in both wound healing and chronic inflammation. It is known to maintain senescence in senescent cells and to signal for senescent cell clearance by the immune system.

The fact that senescent cells become more common with age led researchers to begin developing drugs to target them; these drugs are known as senolytics. In the past couple of years, some senolytic drugs have entered early clinical trials. “While the field has never been more promising, the lack of a simple biomarker to measure and track efficacy of these treatments has been a hindrance to progress,” said Judith Campisi, the study’s senior author, in a press release. “We are excited to bring this new biomarker to the field and look forward to it being used in the clinic.”

Looking at lipids

The new study began by surveying the lipids in quiescent, proliferating, and senescent human cells. To date, the SASP has been primarily studied from the perspective of its protein composition, though some lipids have also been characterized. The researchers wanted to find out if changes in lipid metabolism associated with the SASP might lead to changes in the cellular lipid profile.

They detected a striking increase in the level of a class of lipids known as oxylipins. A variety of oxylipins were more abundant, but the most elevated one proved to be the most important; this molecule is known as 1a,1b-dihomo-15-deoxy-D12,14-prostaglandin J2, or dihomo-15d-PGJ2.

In a series of experiments, the team showed that dihomo-15d-PGJ2 accumulates inside senescent cells. When the senescent cells die, they release the dihomo-15d-PGJ2, and it can then be detected in blood plasma or urine samples.

The researchers also showed that dihomo-15d-PGJ2 is specific to senescence. They treated mice with a chemical that induces senescence and then with a senolytic drug. They could detect the biomarker in blood and urine from the senescence-induced mice but not those that also received the senolytic.

Finally, the team showed that dihomo-15d-PGJ2 is not only a marker of senescence but plays an active role in promoting it. Interfering with the synthesis of dihomo-15d-PGJ2 resulted in a fraction of the cells not becoming senescent, and treating non-senescent cells with dihomo-15d-PGJ2 induced senescence. They were even able to demonstrate that this occurs via activation of the RAS pathway.

“The fact that one of these lipids ends up being a simple non-invasive biomarker for tracking the efficacy of treatments is a huge plus for those of us working to stem the ravages of age-related disease,” said Dr. Judith Campisi.

Cellular senescence is a stress or damage response that causes a permanent proliferative arrest and secretion of numerous factors with potent biological activities. This senescence-associated secretory phenotype (SASP) has been characterized largely for secreted proteins that participate in embryogenesis, wound healing, inflammation, and many age-related pathologies. By contrast, lipid components of the SASP are under-studied. We show that senescent cells activate the biosynthesis of several oxylipins that promote segments of the SASP and reinforce the proliferative arrest.

Notably, senescent cells synthesize and accumulate an unstudied intracellular prostaglandin, 1a,1b-dihomo-15-deoxy-delta-12,14-prostaglandin J2. Released 15-deoxy-delta-12,14-prostaglandin J2 is a biomarker of senolysis in culture and in vivo. This and other prostaglandin D2-related lipids promote the senescence arrest and SASP by activating RAS signaling. These data identify an important aspect of cellular senescence and a method to detect senolysis.


The ability to easily monitor the efficacy of senolytics will be invaluable in clinical trials. This biomarker could prove useful in senescence research more broadly by providing both a straightforward way to detect senescence and a novel molecular angle from which to investigate it. Further work on the other lipids that were elevated by senescence may uncover other players and help fill out our understanding of this complex, multi-faceted, and important process.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Study: Waist-to-Hip Ratio Predicts Mortality Better Than BMI

A new study suggests that waist-to-hip ratio (WHR) has a more linear correlation with all-cause mortality than either body mass...

Restoring Heart Regeneration With a Metabolic Switch

In a recent article in Nature, researchers have restored cardiac regeneration to adult mice by disabling fatty acid oxidation, discovering...

Human Clinical Trials of NMN for Safety and Effectiveness

In a recent paper, researchers reviewed the literature for human clinical trials that address NMN's safety and anti-aging effects [1]....

Lifespan News – Elon Musk and the Living Forever Curse

On this episode of Lifespan News, Ryan O'Shea ruminates on Elon Musk's statement on living forever being a curse rather...


[1] Wiley, CD, Sharma, R, Davis, SS, Lopez-Dominguez, JA, Mitchell, KP, et al. Oxylipin biosynthesis reinforces cellular senescence and allows detection of senolysis. Cell Metabolism (2021), doi: 10.1016/j.cmet.2021.03.008

Related Community Members

Related Topics

About the author

Sedeer el-Showk

Sedeer became a professional science writer after finishing a degree in biology. He also writes poetry and sff, and somehow juggles an ever-growing list of hobbies from programming to knitting to gardening. Eternal curiosity and good fortune have taken him to many parts of the world, but he’s settled in Helsinki, Finland for the moment. He hopes he’ll never stop learning new things.
  1. Neil
    April 10, 2021

    I agree, this is a very exciting development. Dr. Campisi is doing really great work and I look forward to her next breakthrough!

    Does the article say anything about whether this lipid is shared by all senescent cells? Or, is it only by certain types?

    Thanks for the great article Sedeer!

Write a comment:


Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.