Help us: Donate
Follow us on:



A New Clock Tracks Inflammatory Aging

The protein CXCL9 has been singled out as a major inflammatory factor.


Epigenetic clocks have become a mainstay of longevity research over the past few years, with new clocks regularly being established for different species and tissues as well as promising research that uses and builds on these clocks. An international research team has recently created a different kind of clock, an inflammatory aging clock that predicts biological age based on inflammatory and immune markers [1].

Measuring the immunome

The researchers built their clock using data from the Stanford 1000 Immunomes project, a longitudinal study of aging and vaccination that collected blood samples between 2007 and 2016 from 1,001 participants aged 8 to 96. The samples were subjected to deep immune phenotyping using rigorously standardized procedures. Analyses included gene expression, serum cytokine levels, cell subset composition, and cellular responses to various stimuli.

The researchers wanted to use this data to construct a metric for age-related chronic inflammation that could be used to assess a person’s inflammatory burden. To that end, they used an unbiased deep-learning neural network built to compactly capture the nonlinear structure of of immune networks. The model was trained with ten age-related clinical features as outcomes, ranging from cancer and cardiovascular disease to psychiatric evaluations.

A metric for inflammation

This resulted in a metric that the team dubbed the ‘inflammatory clock of aging’, or iAge, which reflects the total inflammatory burden. Analysis showed that iAge correlated well with multimorbidity, or total age-related diseases, as well as with frailty and cardiovascular aging. In other words, like other aging clocks, iAge predicts biological age – in this case, based on inflammatory burden – rather than chronological age.

The team validated iAge in a second cohort, which included hundreds of people over 60 and 19 centenarians. Remarkably, iAge grouped the centenarians together with younger individuals, while older people were separated into a separate group.

Learning from the clock

Rather than resting on their laurels, the researchers immediately used iAge to improve our understanding of age-related inflammation. The most significant contributor to the iAge score was CXCL9, a chemokine produced by cells in inflammatory lesions. Levels of the CXCL9 protein increased significantly with age, reinforcing the notion that it might be an important player.

CXCL9 is strongly expressed in endothelial cells. To understand how it contributes to age-related disorders, the researchers silenced CXCL9 in endothelial cell cultures. They found that this reduced inflammation as well as cellular senescence and malfunction. However, CXCL9 is also important for immune surveillance, so knocking down this gene isn’t a viable, straightforward longevity therapy. Nevertheless, it offers an entry point to improving our understanding of age-related chronic inflammation and, particularly, the importance of the vascular system in this process.

While many diseases of aging have been linked to the immunological system, immune metrics capable of identifying the most at-risk individuals are lacking. From the blood immunome of 1,001 individuals aged 8–96 years, we developed a deep-learning method based on patterns of systemic age-related inflammation. The resulting inflammatory clock of aging (iAge) tracked with multimorbidity, immunosenescence, frailty and cardiovascular aging, and is also associated with exceptional longevity in centenarians. The strongest contributor to iAge was the chemokine CXCL9, which was involved in cardiac aging, adverse cardiac remodeling and poor vascular function. Furthermore, aging endothelial cells in human and mice show loss of function, cellular senescence and hallmark phenotypes of arterial stiffness, all of which are reversed by silencing CXCL9. In conclusion, we identify a key role of CXCL9 in age-related chronic inflammation and derive a metric for multimorbidity that can be utilized for the early detection of age-related clinical phenotypes.


Building on the concept of aging clocks by applying them to other aspects of biological aging seems like a rewarding approach. In addition to the obvious benefit of providing tools to measure other dimensions of how we age and assess how therapeutics affect them, research like this also provides an opportunity to identify and investigate important players in the various processes that make up aging and age-related decline.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Dietary Magnesium in Dementia Prevention

Researchers publishing in the European Journal of Nutrition looked into magnesium as a possible candidate for preventing dementia, focusing on...

Glycine and Cysteine Combo Rescues Cognitive Decline in Mice

Scientists publishing in Antioxidants have reported that increasing glutathione levels with GlyNAC, a supplement that combines glycine and cysteine, significantly...

Vitalik Buterin Exclusive Interview: Longevity, AI and More

Vitalik Buterin holding Zuzu, the puppy rescued by people of Zuzalu. Photo: Michelle Lai Don’t try finding Zuzalu on a...

Centenarians Have Slightly Different Gut Ecologies

Researchers publishing in Nature Microbiology have determined that the viruses populating the intestines of centenarians are slightly different from those...


[1] Sayed, N. et al. An inflammatory aging clock (iAge) based on deep learning tracks multimorbidity, immunosenescence, frailty and cardiovascular aging. Nature Aging (2021), doi: 10.1038/s43587-021-00082-y

About the author

Sedeer el-Showk

Sedeer became a professional science writer after finishing a degree in biology. He also writes poetry and sff, and somehow juggles an ever-growing list of hobbies from programming to knitting to gardening. Eternal curiosity and good fortune have taken him to many parts of the world, but he’s settled in Helsinki, Finland for the moment. He hopes he’ll never stop learning new things.
No Comments
Write a comment:


Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.