Help us: Donate
Follow us on:
Γ—

Menu

Back

Building Artificial Organoids to Study Diseases

This technology lets researchers test human tissues without harming human beings.

Disease analysisDisease analysis

In an open-access paper published in Cell Stem Cell this month, researchers have explained how organoids derived from human pluripotent stem cells (hPSCs) are being used to analyze diseases and develop treatments.

Different sources for different conditions

This review includes both human embryonic stem cells (hESCs), which are derived from the human organism at its very earliest life stages and have been around for a quarter century [1], and induced pluripotent stem cells (iPSCs), which have existed for 17 years and are created by taking existing cells and reverting them to a pluripotent state [2].

These two types are generally used in different research focuses. hESCs are often used to study the cellular effects of genetic modification, such as in genetic diseases. iPSCs, on the other hand, are valuable for studying the effects of existing diseases, including age-related diseases, because they can be taken from afflicted patients and a healthy control group.

Organoid uses

An upgrade from 2D to 3D allows tissue generation

Cellular analysis has come a long way from the petri dish. For an organoid to be an actual miniature organoid instead of just a collection of cells, it needs to have blood vessels (vascularization) along with distinct populations of stem cells and functional cells, just like in natural organs. This cannot be done on a flat sheet.

A great many organoid types have already been created and are in regular use. Lung organoids, in particular, became popular for analyzing the effects of the infamous SARS-CoV-2, the virus that causes COVID-19. Cystic fibrosis and genetic disorders are also popular lung targets, and idiopathic pulmonary fibrosis, which appears to be age-related, has also been studied.

The heart is another key target, and we have already discussed how some particular heart organoids might be useful in researching age-related diseases. Organoids allow for the analysis of many other diseases as well, including congenital heart defects, and they let researchers safely test drugs thar promote cellular proliferation in the heart. These drugs may also one day be useful against heart aging.

This technology also offers potential liver benefits. Although it is known for its regenerative capacity, liver tissue is vulnerable to diseases such as hepatitis, and alcohol’s effects on the liver are well known. The reviewers note that there are no drugs to treat alcoholic liver disease, and organoids might be the right vehicle with which to find them.

Kidney tissue is also a concern, and intestinal, and pancreatic tissue are undergoing similar tests as well. While vascularization is a prerequisite for functional organoids, the blood vessels themselves are often a topic of consideration.

Most notably, particularly in the context of aging, brain organoids can also be created. The differences between the common allele ApoE3 and its Alzheimer’s-linked counterpart ApoE4 have been tested in organoids [3], and some analysis on the effects of removing amyloid beta has already been done [4]. Parkinson’s disease is another target, as are genetic problems such as fragile X syndrome and Friedreich’s ataxia along with mitochondrial disorders.

Not yet the end of mouse studies

Mice, particularly genetically altered mice, are the predominant standard in preclinical drug development, and for good reason: they grow quickly and are relatively easy to keep, and modifying them is becoming an increasingly standardized and simple affair. However, even with the various genetic modifications, mice are still not human beings, and the differences may explain some clinical trial failures: not every drug that works in mice works as well in people.

Of course, organoids do not match full human beings either. While the state of the art outlined in this paper involves fully modeled subsystems, each of these subsystems still doesn’t include all the cells, endocrine factors, and tissues in a human being, particularly when aging is brought into the picture. Therefore, it is unlikely that organoids can broadly replace mice in every circumstance; instead, it’s much more likely that these techniques could be used in tandem, combining the human elements of the organoid with the whole-body analysis of the mouse.

Aside from stem cells used in therapies, it is our hope that advancements in technology will allow for the efficient creation of more organoids that are subject to age-related diseases, making them effective testing grounds for interventions against aging.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Vitalik Buterin Exclusive Interview: Longevity, AI and More

Vitalik Buterin holding Zuzu, the puppy rescued by people of Zuzalu. Photo: Michelle Iai Don’t try finding Zuzalu on a...

Centenarians Have Slightly Different Gut Ecologies

Researchers publishing in Nature Microbiology have determined that the viruses populating the intestines of centenarians are slightly different from those...

Hypoxia Extends Median Lifespan in Fast-Aging Mice by 50%

Scientists have found that continuous oxygen restriction drastically extends the lifespan of progeroid mice, but the effect's mechanism remains a...

Discovering Why Adrenal Cancer Is More Dangerous for Women

A paper published today in Nature Aging has explained a relationship between cellular senescence, cancer of the adrenal glands, and...

Literature

[1] Thomson, J. A., Itskovitz-Eldor, J., Shapiro, S. S., Waknitz, M. A., Swiergiel, J. J., Marshall, V. S., & Jones, J. M. (1998). Embryonic stem cell lines derived from human blastocysts. science, 282(5391), 1145-1147.

[2] Takahashi, K., & Yamanaka, S. (2006). Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. cell, 126(4), 663-676.

[3] Zhao, J., Fu, Y., Yamazaki, Y., Ren, Y., Davis, M. D., Liu, C. C., … & Bu, G. (2020). APOE4 exacerbates synapse loss and neurodegeneration in Alzheimer’s disease patient iPSC-derived cerebral organoids. Nature communications, 11(1), 5540.

[4] Cakir, B., Tanaka, Y., Kiral, F. R., Xiang, Y., Dagliyan, O., Wang, J., … & Park, I. H. (2022). Expression of the transcription factor PU. 1 induces the generation of microglia-like cells in human cortical organoids. Nature Communications, 13(1), 430.

CategoryNews
About the author
Josh Conway

Josh Conway

Josh is a professional editor and is responsible for editing our articles before they become available to the public as well as moderating our Discord server. He is also a programmer, long-time supporter of anti-aging medicine, and avid player of the strange game called β€œreal life.” Living in the center of the northern prairie, Josh enjoys long bike rides before the blizzards hit.
No Comments
Write a comment:

*

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.