Help us: Donate
Follow us on:
Γ—

Menu

Back

Gene Therapy to Induce Epigenetic Reprogramming

It might be possible to induce partial reprogramming in living people.

Mouse DNAMouse DNA

A preprint published in bioRxiv by scientists working at Rejuvenate Bio has described how gene therapy that allows for OSKM expression can be used to increase the lifespans of mice.

A new handle on old problems

The researchers begin this study with a discussion of the known problems of aging research. They bring up the difference between lifespan and healthspan, and they note that much research in this field still involves waiting for whole organisms to die. They also bring up partial reprogramming, which involves using the Yamanaka factors, OSKM, to rejuvenate cells back to a more youthful state.

Previous research has shown that transgenic mice are positively affected by OSKM induction in models of progeria [1] and heart disease [2]. Those mice were genetically engineered from birth to express the OSKM factors in the presence of doxycycline, which was administered in carefully timed doses in order to spur partial, rather than total, reprogramming.

From transgenics to gene therapy

These researchers took the logical next step. Instead of using transgenic mice, they used an adeno-associated virus (AAV) to modify wild-type mice so that they express OSK in the presence of doxycycline. (M, which refers to the potentially carcinogenic c-Myc, was omitted in this study.) At 124 weeks, these mice were extremely old by mouse standards.

Both the control group and the treatment group were injected with doxycycline in weekly on/off cycles. By itself, doxycycline was not found to significantly alter the lifespan of mice. However, the genetically modified mice received significantly reduced frailty and increased lifespans.

AAV OSKM Mice

Other benefits were visible at the epigenetic level. The genetically modified mice had significantly less age acceleration according to the Lifespan Uber Clock, an epigenetic clock trained on these tissues. A related experiment on human keratinocytes showed similar benefits, with a substantially reduced predicted age.

AAV OSKM Mice 2

The researchers note that there were no seriously significant side effects in any of the treated animals, such as teratomas, which can occur with uncontrolled OSK expression. They also note that significant RNA analysis will be required to determine the precise pathways by which OSK rejuvenates cells and tissues.

Conclusion

This study was relatively brief and simple compared to most studies of its kind, but the results are clear and easy to interpret. This research shows that OSK induction can be used to increase the lifespan of living animals, even if they are already very old.

It is clear that the authors’ biotechnology company, Rejuvenate Bio, wants to pursue this potentially groundbreaking approach in human beings in a way that satisfies the FDA. Only clinical trials will be able to determine if lifespan, frailty, and epigenetic metrics can truly be improved in people.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if it’s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Castration Influences Growth and Median Lifespan in Mice

Research published in Aging Cell has discovered that castrated male mice show similarities to females in growth and lifespan [1]....

Michael Lustgarten Fights Back Against Microbes

Dr. Michael Lustgarten delivers a clear and enlightening exploration of the intricate relationship between microbial burden and aging in Microbial...

Stabilized Vitamin C Improves Brain Aging in Mice

Korean scientists publishing in Nature were able to increase the stability of vitamin C, a powerful antioxidant, using a short,...

Bryan Johnson Thinks AI Should Run Your Life

In this video, Bryan Johnson, founder and CEO of Blueprint, shared his ideas about the role of artificial intelligence (AI)...

Literature

[1] Ocampo, A., Reddy, P., Martinez-Redondo, P., Platero-Luengo, A., Hatanaka, F., Hishida, T., … & Belmonte, J. C. I. (2016). In vivo amelioration of age-associated hallmarks by partial reprogramming. Cell, 167(7), 1719-1733.

[2] Chen, Y., LΓΌttmann, F. F., Schoger, E., SchΓΆler, H. R., ZelarayΓ‘n, L. C., Kim, K. P., … & Braun, T. (2021). Reversible reprogramming of cardiomyocytes to a fetal state drives heart regeneration in mice. Science, 373(6562), 1537-1540.

About the author
Josh Conway

Josh Conway

Josh is a professional editor and is responsible for editing our articles before they become available to the public as well as moderating our Discord server. He is also a programmer, long-time supporter of anti-aging medicine, and avid player of the strange game called β€œreal life.” Living in the center of the northern prairie, Josh enjoys long bike rides before the blizzards hit.
No Comments
Write a comment:

*

Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.