The “Love Hormone” Oxytocin as an Alzheimer’s Therapy


Oxytocin in heartsOxytocin in hearts

Japanese researchers led by Professor Akiyoshi Saitoh from the Tokyo University of Science have published new research that explores the potential of oxytocin as a therapy to combat cognitive disorders such as Alzheimer’s disease.

Oxytocin is often called the love hormone, given its role in the reproductive system and its role in creating feelings such as love, well-being, and trust. Oxytocin is also known to decrease with age, and researchers such as Dr. Irina Conboy have explored its role in aging [1]. Oxytocin is known to activate MAP kinase, a pathway that plays an important role in aging and tissue regeneration [2].

More recently, it was discovered that it is also involved in learning and cognitive performance, so the researchers of this new study wanted to explore the effects of oxytocin on amyloid beta (Aβ)-induced cognitive impairment, typically seen in Alzheimer’s disease [3].

In order to see how Aβ impairs cognition, the team initially circulated Aβ through slices of mouse hippocampus to see how it impacted the signaling capacity of the neurons in the tissue. Next, they circulated oxytocin through the same brain slices and observed that neuron signaling improved, suggesting that the oxytocin was able to reverse the signaling impairment caused by Aβ.

In a healthy brain, oxytocin acts by binding to oxytocin receptors, structures located in the membranes of neurons. The researchers’ next step was to inhibit these receptors in the brain slices to see if oxytocin could reverse the cognitive impairment that Aβ causes without being able to bind to the oxytocin receptors.


Eterna is a clothing company with a focus on longevity.

In other words, could oxytocin reverse the impairment simply by its presence? The answer was, perhaps unsurprisingly, no. These results confirmed that the oxytocin receptors are a critical part of the reversal process.

Oxytocin is known to play an important role in neuronal signaling strength and in facilitating the creation of memories via a number of chemical interactions, including the influx of calcium ions. Previous studies suggest that Aβ disrupts these chemical interactions, and when the researchers artificially blocked them, they found that the addition of oxytocin did not reverse Aβ impairment. This means that oxytocin relies on these chemical interactions to reverse the damage.

Oxytocin, a peptide hormone synthe[prisna-wp-translate-show-hide behavior=”show”][/prisna-wp-translate-show-hide]sized in the hypothalamic paraventricular nucleus, has been reported to participate in the regulation of learning and memory performance. However, no report has demonstrated the effect of oxytocin on the amyloid-beta (Aβ)-induced impairment of synaptic plasticity. In this study, we examined the effects of oxytocin on the Aβ-induced impairment of synaptic plasticity in mice.

We found that oxytocin reversed the impairment of LTP induced by Aβ25-35 perfusion in the mouse hippocampus. These effects were blocked by pretreatment with the selective oxytocin receptor antagonist L-368,899. Furthermore, the treatment with the ERK inhibitor U0126 and selective Ca2+-permeable AMPA receptor antagonist NASPM completely antagonized the effects of oxytocin.


This study is the first of its kind in showing that oxytocin can reverse Aβ-induced cognitive impairment. The usual caveats apply, of course: this is in mice, it is at a very early stage of research, and more in vivo studies must be conducted prior to moving to human trials.

That said, given that there are currently no effective treatments for Alzheimer’s disease available yet, this line of research presents a novel approach to treating the condition.


An advertisement banner for PartiQular supplements.

To do this, we need your support. Your charitable contribution tranforms into rejuvenation research, news, shows, and more. Will you help?


[1] Mehdipour, M., Etienne, J., Chen, C. C., Gathwala, R., Rehman, M., Kato, C., … & Conboy, I. M. (2019). Rejuvenation of brain, liver and muscle by simultaneous pharmacological modulation of two signaling determinants, that change in opposite directions with age. Aging (Albany NY), 11(15), 5628.

[2] Yousef, H., Conboy, M. J., Mamiya, H., Zeiderman, M., Schlesinger, C., Schaffer, D. V., & Conboy, I. M. (2014). Mechanisms of action of hESC-secreted proteins that enhance human and mouse myogenesis. Aging (Albany NY), 6(8), 602.

[3] Takahashi, J., Yamada, D., Ueta, Y., Iwai, T., Koga, E., Tanabe, M., … & Saitoh, A. (2020). Oxytocin reverses Aβ-induced impairment of hippocampal synaptic plasticity in mice. Biochemical and Biophysical Research Communications.


About the author

Steve Hill

Steve serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 600 articles on the topic, interviewed over 100 of the leading researchers in the field, hosted livestream events focused on aging, as well as attending various medical industry conferences. His work has been featured in H+ magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Swiss Monthly, Keep me Prime, and New Economy Magazine. Steve is one of three recipients of the 2020 H+ Innovator Award and shares this honour with Mirko Ranieri – Google AR and Dinorah Delfin – Immortalists Magazine. The H+ Innovator Award looks into our community and acknowledges ideas and projects that encourage social change, achieve scientific accomplishments, technological advances, philosophical and intellectual visions, author unique narratives, build fascinating artistic ventures, and develop products that bridge gaps and help us to achieve transhumanist goals. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project.