Help us: Donate
Follow us on:



A Link Between the Microbiome, Heat, and Osteoporosis

CGI image of the gut and microbiomeCGI image of the gut and microbiome

Researchers from the University of Geneva have shown that a warm environment improves bone strength and highlights a related link with gut microbiome composition. These findings also pave the way for novel therapies for the treatment of osteoporosis.

Turning up the heat

Osteoporosis is an age-related bone disease typified by the loss of bone density, which increases the risk of fractures and breaks due to loss of bone structure. The condition is present in around one third of postmenopausal women and presents a serious health and quality of life issue. New research suggests that there is a link between osteoporosis, heat, and the bacteria living in our guts.

The gut microbiome and the bacteria that live within its ecosystem have been shown in previous studies to influence systemic inflammation, longevity, skeletal muscle mass, and gut barrier integrity, and it might even be the link between chronic inflammation and Alzheimerโ€™s disease.

In a new study, using the latest metagenomic and metabolomics tools and techniques, the research team showed that a warm environment of 34 ยฐC appears to improve bone strength and prevents the age-related bone density loss typically seen in diseases such as osteoporosis [1].

The researchers showed that the phenomenon is linked to changes to the populations of bacteria living in the gut microbiome. They were able to improve bone strength and density in mice suffering with osteoporosis by transplanting microbiota from mice that were kept at a warmer environmental temperature. Doing this also had the overall effect of slowing down the progression of the disease.

It appears that the beneficial changes relating to heat come from gut bacteria that produce a metabolite known as polyamine, which is known to improve bone tissue upkeep. By transplanting these particular bacteria, which thrive in warmer environments, to the guts of mice suffering from osteoporosis in colder conditions, the researchers observed some reversal of disease progression.

Further, this benefit is not observed in mice in which polyamine production is actively prevented via inhibition. This points the finger at polyamine, and the bacteria that produce it, being the key players in the effect that heat has on osteoporosis.

Interesting, but what about humans?

The researchers looked at epidemiological data relating to the incidence of osteoporosis, taking into account average temperature, latitude, calcium consumption, and vitamin D levels. They discovered that there was a lower incidence of hip fractures, a common consequence of osteoporosis, for people who live in warmer regions.

Calcium and vitamin D, which are known players in the progression of osteoporosis, did not influence the correlation between environmental heat and fracture risk. This suggests that while these two factors likely do play a role, the most influential factor appears to be heat.

Osteoporosis is the most prevalent metabolic bone disease, characterized by low bone mass and microarchitectural deterioration. Here, we show that warmth exposure (34ยฐC) protects against ovariectomy-induced bone loss by increasing trabecular bone volume, connectivity density, and thickness, leading to improved biomechanical bone strength in adult female, as well as in young male mice. Transplantation of the warm-adapted microbiota phenocopies the warmth-induced bone effects. Both warmth and warm microbiota transplantation revert the ovariectomy-induced transcriptomics changes of the tibia and increase periosteal bone formation. Combinatorial metagenomics/metabolomics analysis shows that warmth enhances bacterial polyamine biosynthesis, resulting in higher total polyamine levels in vivo. Spermine and spermidine supplementation increases bone strength, while inhibiting polyamine biosynthesis in vivo limits the beneficial warmth effects on the bone. Our data suggest warmth exposure as a potential treatment option for osteoporosis while providing a mechanistic framework for its benefits in bone disease.


These findings could pave the way for the development of novel therapies to address osteoporosis. Such low-tech approaches as fecal transfers are one such possibility, as is isolating the particular bacteria in question and transferring them as a probiotic to patients with osteoporosis.

We would like to ask you a small favor. We are a non-profit foundation, and unlike some other organizations, we have no shareholders and no products to sell you. We are committed to responsible journalism, free from commercial or political influence, that allows you to make informed decisions about your future health.

All our news and educational content is free for everyone to read, but it does mean that we rely on the help of people like you. Every contribution, no matter if itโ€™s big or small, supports independent journalism and sustains our future. You can support us by making a donation or in other ways at no cost to you.

Dietary Magnesium in Dementia Prevention

Researchers publishing in the European Journal of Nutrition looked into magnesium as a possible candidate for preventing dementia, focusing on...

Glycine and Cysteine Combo Rescues Cognitive Decline in Mice

Scientists publishing in Antioxidants have reported that increasing glutathione levels with GlyNAC, a supplement that combines glycine and cysteine, significantly...

Vitalik Buterin Exclusive Interview: Longevity, AI and More

Vitalik Buterin holding Zuzu, the puppy rescued by people of Zuzalu. Photo: Michelle Lai Donโ€™t try finding Zuzalu on a...

Centenarians Have Slightly Different Gut Ecologies

Researchers publishing in Nature Microbiology have determined that the viruses populating the intestines of centenarians are slightly different from those...


[1] Chevalier, C., Kieser, S., ร‡olakoฤŸlu, M., Hadadi, N., Brun, J., Rigo, D., … & Ivaniลกeviฤ‡, J. (2020). Warmth Prevents Bone Loss Through the Gut Microbiota. Cell Metabolism.

About the author

Steve Hill

Steve serves on the LEAF Board of Directors and is the Editor in Chief, coordinating the daily news articles and social media content of the organization. He is an active journalist in the aging research and biotechnology field and has to date written over 600 articles on the topic, interviewed over 100 of the leading researchers in the field, hosted livestream events focused on aging, as well as attending various medical industry conferences. His work has been featured in H+ magazine, Psychology Today, Singularity Weblog, Standpoint Magazine, Swiss Monthly, Keep me Prime, and New Economy Magazine. Steve is one of three recipients of the 2020 H+ Innovator Award and shares this honour with Mirko Ranieri โ€“ Google AR and Dinorah Delfin โ€“ Immortalists Magazine. The H+ Innovator Award looks into our community and acknowledges ideas and projects that encourage social change, achieve scientific accomplishments, technological advances, philosophical and intellectual visions, author unique narratives, build fascinating artistic ventures, and develop products that bridge gaps and help us to achieve transhumanist goals. Steve has a background in project management and administration which has helped him to build a united team for effective fundraising and content creation, while his additional knowledge of biology and statistical data analysis allows him to carefully assess and coordinate the scientific groups involved in the project.
No Comments
Write a comment:


Your email address will not be published.

This site uses Akismet to reduce spam. Learn how your comment data is processed.