×

The Blog

Building a Future Free of Age-Related Disease

Inflammaging and Age-related Disease

The aging process is accompanied by a chronic, smoldering background of inflammation that researchers call “inflammaging”. This backdrop of low-grade inflammation contributes significantly to mortality risk in the elderly and has a number of sources.

Today, we are going to take a look at inflammaging and the various known sources that promote this age-related inflammatory condition.

Inflammaging precedes many age-related diseases

The chronic inflammation that accompanies the aging process is believed to be a significant risk factor for a myriad of age-related diseases, such as atherosclerosis, arthritis, hypertension, and cancer [1-3].

The burden of unhealthy lifestyles is rising globally and, with it, an increase in age-related diseases. While lifestyle changes may help to reduce the risk of age-related diseases, this is by no means a guarantee.

The immune system relies on acute inflammation during the immune response to fight invading pathogens and to facilitate wound healing. This triggers cell turnover and tissue repair and is, in general, a desirable reason for inflammation. However, in direct contrast to this, inflammaging produces a chronic, low-grade, persistent background of inflammation that leads to poor tissue repair and degeneration [4].

This chronic inflammation also contributes to the development of age-related diseases and is instrumental in driving the aging process in general [5]. In older people, the tissues have high levels of inflammatory cytokines, such as IL-6, IL-1β, TGF-b, and TNF-α, which are known to interfere with anabolic signaling, including insulin and erythropoietin signaling, thus contributing to the development of sarcopenia. This is part of the aging hallmark of deregulated nutrient sensing [6].

This inflammation also plays a key role in reducing the level of NAD+ and sirtuin activity by increasing CD38 in tissue, which is linked to the development of sarcopenia and other age-related diseases [7-9].

Senescent cells

Cells are driven into a senescent, non-dividing state by a number of factors, including telomere shortening, DNA damage, genotoxic stress, and inflammatory cytokines. These all result in the activation of the p53 tumor suppressor and/or the cyclin-dependent kinase inhibitor p16 [10]. The immune system clears away these damaged cells during normal operation; however, as we age, the clearing away of these cells declines, and increasing numbers linger in tissues and secrete an inflammatory cocktail of cytokines known as the senescence-associated secretory phenotype, or SASP.

Based on the evidence to date, it seems likely that senescent cells are the main source of inflammaging during the aging process [11-12]. An increasing body of evidence suggests that the therapeutic removal of these problem senescent cells could delay or even prevent various age-related diseases, including atherosclerosis and osteoarthritis [13-17].

Microbial burden

The oral and gut mucosa barriers that protect against bacterial invasion begin to both decline in effectiveness and break down as we age. Periodontal disease has been shown to shown to contribute to inflammaging by generating chronic, low-grade inflammation [18]. In the gut, the microbiome shows an increasing decline of diversity with age [19-20].

For example, one study showed that beneficial bacteria like Bifidobacterium spp., and F. prausnitzii, which play an anti-inflammatory role in the gut microbiome, decline with age, allowing inflammation to increase [21]. The level of Bifidobacterium directly influences the levels of inflammatory cytokines present in the bloodstream, with less Bifidobacterium corresponding to more inflammation. The opposite is true of harmful bacteria, such as Streptococcus spp., Staphylococcus spp., Enterococcus spp. and Enterobacter spp, which increase with age and promote inflammation and disease.

The role of microbial burden and the microbiome is becoming increasingly clear, and studies like one performed in China last year show the connection [22]. This large-scale study found that the healthiest aged people had gut microbiomes similar to much younger people; in other words, they maintained diversity and thus lower levels of inflammation.

Immunosenescence

Immunosenescence, the age-related decline of the immune system, is typified by inappropriate immune responses that generate persistent levels of inflammation as a result [23]. Immunosenescence increases our vulnerability to infections, autoimmune reactions, and cancer while decreasing our response to vaccinations and disrupting wound healing [24-25].

While not fully understood, chronic inflammatory disease also appears to accelerate immunosenescence via affecting both the numbers and function of immune cells. Immunosenescence may also be accelerated and aggravated by persistent infections, such as CMV, HIV, and Epstein–Barr virus, linking it to microbial burden.

Finally, because the immune system is responsible for removing senescent cells, its decline results in a loss of this ability, thus creating a downward spiral of increasing inflammation.

Cell Debris

Cell debris caused by inappropriate cell destruction and clearance during the aging process can trigger the innate immune system, which sets the scene for persistent inflammation. Cell debris (damage-associated molecular patterns, i.e., damaged organelles, cells, and macromolecules) accumulate with age as a consequence of both increased production and impaired elimination.

Of particular interest in recent years has been mitochondria-derived damage-associated molecular patterns (DAMPs), which are released by aged and damaged mitochondria. Mitochondrial DAMPs have been the focus of intense research recently due to their likely involvement with inflammaging and age-related diseases [26]. Due to their bacterial ancestry, the mitochondrial DAMPs increase inflammatory responses due to their interaction with receptors in a manner similar to those caused by regular pathogens.

Cell debris have recently been shown to disrupt tissue repair such as in nerve tissue where the improper clearance of debris by neutrophils impairs tissue regeneration [27].

Conclusion

These are just some of the known ways in which inflammation sources contribute to the smoldering background that is inflammaging. There is considerable evidence suggesting that many age-related diseases, such as cancer, heart disease, and Alzheimer’s, are linked to inflammaging.

Finding ways to manage and reduce inflammation from these and other sources therefore holds potential as a therapeutic approach to treating and preventing age-related diseases. Senolytic therapies that selectively destroy senescent cells to reduce inflammation are one example of how we might manage inflammaging.

Literature

[1] Freund A, Orjalo AV, Desprez PY, Campisi J. Inflammatory networks during cellular senescence: causes and consequences. Trends Mol Med (2010) 16(5):238–46. doi: 10.1016/j.molmed.2010.03.003

[2] Childs, B. G., Gluscevic, M., Baker, D. J., Laberge, R. M., Marquess, D., Dananberg, J., & van Deursen, J. M. (2017). Senescent cells: an emerging target for diseases of ageing. Nature Reviews Drug Discovery, 16(10), 718.

[3] He, S., & Sharpless, N. E. (2017). Senescence in health and disease. Cell, 169(6), 1000-1011.

[4] Straub, R. H., & Schradin, C. (2016). Chronic inflammatory systemic diseases: An evolutionary trade-off between acutely beneficial but chronically harmful programs. Evolution, medicine, and public health, 2016(1), 37-51.

[5] Franceschi, C., & Campisi, J. (2014). Chronic inflammation (inflammaging) and its potential contribution to age-associated diseases. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 69(Suppl_1), S4-S9.

[6] Beyer, I., Mets, T., & Bautmans, I. (2012). Chronic low-grade inflammation and age-related sarcopenia. Current Opinion in Clinical Nutrition & Metabolic Care, 15(1), 12-22.

[7] Sinclair D. Bonkowski, M. Impairment of an Endothelial NAD+-H2S Signaling Network Is a Reversible Cause of Vascular Aging (2018) doi.org/10.1016/j.cell.2018.02.008

[8] Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., … & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139.

[9] Schultz, M. B., & Sinclair, D. A. (2016). Why NAD+ declines during aging: It’s destroyed. Cell metabolism, 23(6), 965-966.

[10] de Magalhães, J. P., & Passos, J. F. (2017). Stress, cell senescence and organismal ageing. Mechanisms of ageing and development.

[11] Sanada, F., Taniyama, Y., Azuma, J., Iekushi, K., Dosaka, N., Yokoi, T., … & Morishita, R. (2009). Hepatocyte Growth Factor, but not Vascular Endothelial Growth Factor, Attenuates Angiotensin II–Induced Endothelial Progenitor Cell Senescence. Hypertension, 53(1), 77-82.

[12] Tchkonia, T., Zhu, Y., Van Deursen, J., Campisi, J., & Kirkland, J. L. (2013). Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical investigation, 123(3), 966-972.

[13] Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & Van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472-477.

[14] Jeon, O. H., Kim, C., Laberge, R. M., Demaria, M., Rathod, S., Vasserot, A. P., … & Baker, D. J. (2017). Local clearance of senescent cells attenuates the development of post-traumatic osteoarthritis and creates a pro-regenerative environment. Nature medicine, 23(6), 775.

[15] Baker, D. J., Wijshake, T., Tchkonia, T., LeBrasseur, N. K., Childs, B. G., Van De Sluis, B., … & Van Deursen, J. M. (2011). Clearance of p16 Ink4a-positive senescent cells delays ageing-associated disorders. Nature, 479(7372), 232.

[16] Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … & O’hara, S. P. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644-658.

[17] Roos, C. M., Zhang, B., Palmer, A. K., Ogrodnik, M. B., Pirtskhalava, T., Thalji, N. M., … & Zhu, Y. (2016). Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice. Aging Cell, 15(5), 973-977.

[18] Franceschi, C., Garagnani, P., Vitale, G., Capri, M., & Salvioli, S. (2017). Inflammaging and ‘Garb-aging’. Trends in Endocrinology & Metabolism, 28(3), 199-212.

[19] Kinross, J., & Nicholson, J. K. (2012). Gut microbiota: dietary and social modulation of gut microbiota in the elderly. Nature Reviews Gastroenterology and Hepatology, 9(10), 563.

[20] Claesson, M. J., Cusack, S., O’Sullivan, O., Greene-Diniz, R., de Weerd, H., Flannery, E., … & Stanton, C. (2011). Composition, variability, and temporal stability of the intestinal microbiota of the elderly. Proceedings of the National Academy of Sciences, 108(Supplement 1), 4586-4591.

[21] Toward, R., Montandon, S., Walton, G., & Gibson, G. R. (2012). Effect of prebiotics on the human gut microbiota of elderly persons. Gut microbes, 3(1), 57-60.

[22] Bian, G., Gloor, G. B., Gong, A., Jia, C., Zhang, W., Hu, J., … & Burton, J. P. (2017). The Gut Microbiota of Healthy Aged Chinese Is Similar to That of the Healthy Young. mSphere, 2(5), e00327-17.

[23] Shaw, A. C., Goldstein, D. R., & Montgomery, R. R. (2013). Age-dependent dysregulation of innate immunity. Nature Reviews Immunology, 13(12), 875.

[24] Aw, D., Silva, A. B., & Palmer, D. B. (2007). Immunosenescence: emerging challenges for an ageing population. Immunology, 120(4), 435-446.

[25] Gruver, A. L., Hudson, L. L., & Sempowski, G. D. (2007). Immunosenescence of ageing. The Journal of pathology, 211(2), 144-156.

[26] Zhang, Q., Raoof, M., Chen, Y., Sumi, Y., Sursal, T., Junger, W., … & Hauser, C. J. (2010). Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature, 464(7285), 104.

[27] Lindborg, J. A., Mack, M., & Zigmond, R. E. (2017). Neutrophils are critical for myelin removal in a peripheral nerve injury model of Wallerian degeneration. Journal of Neuroscience, 2085-17.

Vitalik Buterin supports life extension.

The Best Thing to Donate Money to is the Fight Against Aging

A few days ago, LEAF representatives attended the Undoing Aging 2018 conference in Berlin, which was jointly organized by the SENS Research Foundation and the Forever Healthy Foundation. We invited one of the most professional Russian journalists writing about aging, Anna Dobryukha, to this conference, and she will write a series of articles and interviews in Komsomolskaya Pravda (KP) over the next weeks. As these articles are interesting to the global community, we decided to translate them for our blog.

Today, we publish the first article of this series, an interview that Anna conducted with Vitalik Buterin, the creator of the cryptocurrency Ethereum. Vitalik donated 2.4 million dollars to the SENS Research Foundation earlier this year, so let’s find out what Vitalik’s views are on rejuvenation biotech and life extension! The original article, “King of Ethereum” Vitalik Buterin: the best thing to donate money to is the fight against aging, is by Anna Dobryukha and has been translated by Elena Milova and Joshua Conway.

Vitalik Buterin, a brilliant young programmer and the creator of one of the two most valuable cryptocurrencies in the world, Ethereum, told KP why he gave $2.4 million for research on aging and why helping life extension is a worthy cause.

Bypassing Zuckerberg

The 24-year-old Russian-Canadian programmer is called one of the most influential people on Earth, being referred to as a “crypto-god” and “the king of Ethereum”. In 2013, he developed Ethereum, a unique platform for online services, and became the creator of the Ethereum cryptocurrency, which is now the second-most valuable in the world, behind Bitcoin. In 2014, Vitalik Buterin received the honorary award of the World Technology Network, ahead of Mark Zuckerberg.

Perhaps even now, this young genius is one step ahead of the creator of Facebook; at least, this is what the world’s leading life extension researchers believe. As you know, Mark and his wife Priscilla announced that within the next 10 years, they will donate $3 billion for research to combat cardiovascular problems, cancer, and other diseases. In February, Vitalik Buterin transferred $2.4 million in Ethereum to the SENS Research Foundation, the international anti-aging research foundation headed by the famous British gerontologist Aubrey de Grey. Last week, Buterin came to the Undoing Aging conference in Berlin, an event that SRF and the Forever Healthy Foundation organized and which was attended by more than 340 participants from 36 countries. The reporter from KP.ru was one of the few media representatives invited to this conference and turned out to be the only Russian journalist there.

Cancelling Aging, Preventing Cancer

Vitalik, wealthy people usually donate money towards research into and treatment of cancer, Alzheimer’s disease, and other diseases. Why did you decide to donate Ethereum to the fight against aging?

The first reason is just because there are many other people who donate to fight against cancer and other specific diseases, which, of course, is very important and necessary. The second reason is that there is strong scientific evidence that aging is the root of the most serious diseases.

Yes, KP has written about this more than once: cancer, diabetes, and other illnesses cause the overwhelming majority of deaths of older people. The world’s leading scientists have already proven that aging is the root cause of the health damage that leads to malignant tumors, stroke and Alzheimer’s disease. It turns out that if you slow down aging or even reverse it, you can save people from these serious illnesses.

Exactly. After all, if you do not prevent these diseases by eliminating aging, you will have to provide treatment to people who are already sick and suffering and whose quality of life is worsening, and the economy will be under enormous pressure because the treatment is often expensive, caregiving is needed, etc. These problems could be avoided. Studies of aging are very important right now, yet there are still very few people who invest money in this field, unfortunately.

Why do you think that is so?

Most people simply do not know or do not believe that aging can be successfully manipulated. However, I have read “Ending Aging” by Dr. Aubrey de Grey, I’m interested in scientific discoveries, and I see that this is plausible. Researchers can already extend the life of laboratory animals significantly, and it is necessary to refine these technologies in order to transfer them to humans. And this [research and full-scale clinical trials of anti-aging therapies in humans] requires money.

Biohacking

How do you feel about biohacking, whose supporters believe that the human body can and should be “cracked” in order to improve what is given to us by nature, including slowing down aging, with the help of the latest achievements of science and medicine?

It is very interesting, but I’m not doing it myself now. I still have a lot of time (smiles). So far, I plan to wait long enough to see the anti-aging medicine and technology industry grow into something really effective and safe.

There are a lot of approaches to aging research – what do you personally consider to be the most important?

It’s most important to run the research on people and not just wait for people to die [naturally]. There are already reliable biomarkers that can help assess the biological age of a person, and thanks to them, we can see how effective a therapy is within five years and don’t have to wait 30 to 50 years to see if a treatment can extend life. This can greatly accelerate clinical trials.

“I’m ready to invest more”

Do you have plans to continue supporting research projects on aging and life extension, or is your current contribution of 2.4 million dollars likely to be all?

Of course I’m ready to invest more into it. However, right now, I am mostly investigating what the scientists are working on, what the most promising directions are, and what else should be supported.

What, in your opinion, is the main problem currently hampering the fight against aging on Earth?

There is not enough public support. Huge resources, as I said, are invested in research and treatment of single diseases, but the problem is that if we focus only on specific diseases, this will only slightly improve the lives of people who are already chronically sick. Only a few years will be added to their lives.

Note from KP: Experts have estimated that a complete victory over cardiovascular diseases and cancer can extend the life of people by only 5 to 8 years on average.

Why live longer?

Vitalik, what would you say to other wealthy people who have financial opportunities and the desire to donate money for a worthy cause?

I would say that now, in the 21st century, there are many breakthrough technologies that are developing very quickly; artificial intelligence is moving to new frontiers, biology is very actively moving forward, and, in fact, there is a very good chance that in the next 30 or 50 years, we, as people, will be able to slow down or even reverse the aging process to the extent that we could live much longer. This is one of the most important tasks on which mankind can work. I would remind everyone that successful treatment of cancer, quitting smoking, and achieving victory over cardiovascular diseases can increase life by 5 to 8 years; yet, thanks to anti-aging technologies, it might be possible to prolong life by 50, 70, or many more years.

I would also say to people that if you have money, you can donate it to fight against aging; if you want, you can invest in this sphere, as there are a lot of interesting startups. If you are young and need to choose what to do, then you could study biology and think about what you can do to prolong a person’s life. It’s really the most important thing.

Sometimes, people ask why they should prolong their lives at all and say that to live longer is boring. In your opinion, when we have very long lifespans, what is worth living for?

There are so many things happening in the world and so many discoveries; a person can get new experience in various spheres of life, but now there is so little time for all this. If you can live much longer, then imagine how much you can do, see, and feel in five hundred years! How can a society change if there are not only young people but also people who have 200-300 years of experience while still retaining health and cognitive capacities. I am sure that the benefits of prolonging life will be just enormous.

To the point

The World Health Organization has recognized that people fall ill because of aging.

WHO has made revolutionary additions to the International Classification of Diseases (ICD-11). This was reported at a conference in Berlin by the head of the Department for the Prevention of Health Risks of the Central Research Institute of Health Informatization of the Ministry of Health of Russia, Daria Khaltourina. She leads an international group of experts who have developed and submitted a detailed and well-grounded initiative to WHO, explaining why aging itself should be considered a disease that leads to dysfunctions in the body, causing many other diseases in older people.

Aging has classic signs of disease; the function of various organs and systems of the body is disrupted, leading to related symptoms, including frailty, or asthenia of old age, explains Daria Khaltourina. Furthermore, there is convincing evidence that aging leads to the most unfavorable changes in the body, and heart attacks, strokes, cancer, diabetes, and other serious diseases develop because of it.

At this stage, WHO has approved the addition of indices to ICD-11; in these indices, a number of diseases will be accompanied by the adjective “age-related”, meaning that they are associated with age or caused by aging. This innovation will help to attract more attention to the problems of aging and research to combat it while opening up opportunities for official full-scale clinical trials of anti-aging drugs and therapies, as experts have explained.

We would like to thank Vitalik Buterin for taking the time to share his thoughts with us. If you want to help the fight against aging, please donate to help us continue our important work.

Why NAD+ Declines With Age

Nicotinamide adenine dinucleotide (NAD+), a nucleotide, is critical for life to exist. From the most simple bacteria to complex multicellular organisms such as humans, NAD is a vital component of cellular function and thus life.

An increased level of NAD+ appears to convey health and longevity, and a decrease is associated with aging and disease. Today, we are going to look at NAD+, why it declines with age, and what science might do about it.

What is NAD?

NAD+ is abundantly found in the majority of living cells and is involved in electron transfer and the regulation of various biological pathways, from intracellular calcium transients to the epigenetic status of chromatin. NAD+ provides a critical link between cellular signalling and metabolism, and it is a key player in the metabolic nutrient sensing pathways.

NAD is best known for its role as a coenzyme involved in redox reactions, transporting electrons from one reaction to another within the cell, and linking the catabolic reactions of glycolysis and the citric acid cycle to oxidative phosphorylation.

However, in the last twenty years, NAD+ has been discovered to also play a role as a signalling molecule. In all species, increased levels of NAD+ cause cells to make changes that improve their survival; this includes increased energy production and use, improved cellular repair, and coordinating circadian rhythms.

NAD+ is converted into signals by various enzymes that are designed to sense NAD+, including the sirtuins (SIRT1–SIRT7), CtBP1 and 2, and poly-ADP-ribose polymerases(PARPs). Recent studies have shown that mice treated with PARP inhibitors or NAD+ precursors have health benefits. Some of the observed benefits have been increased insulin sensitivity, reduced mitochondrial dysfunction, reduced cellular senescence, and increased lifespan [1-3]. Unfortunately, with age, levels of NAD+ fall in all studied species.

NAD+ declines with age because it is destroyed

It has been known for some time that NAD levels decline during the aging process, but it is actively destroyed by the enzyme CD38 [4-5]. CD38 is a membrane-bound NADase that hydrolyzes NAD+ to nicotinamide and (cyclic-)ADP-ribose. It is associated with immune responses and energy metabolism, but it is also a NADase whose levels rise with aging, with a corresponding increase in NADase activity and a decrease of NAD+.

Tests have shown that mice bred to be deficient in CD38 enjoy increased protection from mitochondrial dysfunction and are resistant to diabetes as they age. This protective action is regulated via the mitochondrial sirtuin SIRT3. Research shows that mice treated with the CD38 inhibitor apigenin, a flavone found in many plants, show increased levels of NAD+ and are resistant to the effects of high-fat diets [6].

A 2016 study showed that protein levels of CD38 increase in multiple tissues during the aging process, with a corresponding rise in CD38 activity [7]. One of the hallmarks of aging is that of mitochondrial dysfunction, and this study showed that cells with high levels of CD38 use less oxygen, have increased lactate, and have dysfunctional mitochondria. In the mitochondria of the livers of CD38 knockout mice, more oxygen is consumed, and they have greater mitochondrial membrane potential.

The current approach to address the loss of NAD+ is to increase it with NAD+ precursors, such as niacin, nicotinamide riboside (NR), and nicotinamide mononucleotide (NMN). As CD38 actively degrades both NAD+ and NMN, it may be a useful approach to combine such NAD+ boosting therapies with CD38 inhibitors to increase potency.

Inflammaging likely drives NAD+ depletion in aging

We now know that CD38 is the major culprit in NAD+ decline, but why does it fall in the first place? CD38 expression and activity are known to be induced by inflammatory cytokines and bacterial endotoxins, such as lipopolysaccharides (LPS) [8-11]. This strongly suggests that the smouldering, age-related, chronic inflammation commonly called “inflammaging” may be driving the increased expression of CD38 and the resulting NAD+ decline.

This is because senescent cells secrete CD38 as part of the pro-inflammatory cytokine cocktail known as the senescence-associated secretory phenotype (SASP). This mixture of pro-inflammatory signals includes CD38, and senescent cells accumulate during aging as the immune system increasingly fails to remove the problem cells. Thus, more senescent cells almost certainly means more CD38 and less NAD+ available.

The same goes for increasing amounts of cell debris and microbial burden; these also drive inflammaging, thus increasing CD38, decreasing NAD+, and causing age-related dysfunction.

Therapies that increase NAD+ in cells, and potentially co-therapies that reduce CD38, are a potential way to slow an aging process and may help to treat metabolic disorders such as diabetes. There is potential for such approaches to increase the number of years we spend healthy, and it may even increase lifespan as it does in other species; the good news is that we may soon find out.

Conclusion

NAD+ boosting therapies represent a near-future prospect, given that they are currently already in small-scale human trials right now, with a view to moving to larger human studies in the future. This therapy can be considered a true rejuvenation therapy, as it directly addresses the aging hallmark of deregulated nutrient sensing and partially addresses genomic instability via encouraging DNA repair. It will be interesting to see if this or senescent cell clearance will be the next rejuvenation technology to arrive, given that stem cell therapy is already here.

Readers may also be interested to learn that the David Sinclair lab at Harvard Medical School has also successfully launched the NAD+ Mouse Project on Lifespan.io, this project aims to test NAD+ replacement therapies on mice and study the long-term effects on health and lifespan.

Literature

[1] Bai, P., Cantó, C., Oudart, H., Brunyánszki, A., Cen, Y., Thomas, C., … & Schoonjans, K. (2011). PARP-1 inhibition increases mitochondrial metabolism through SIRT1 activation. Cell metabolism, 13(4), 461-468.

[2] Gomes, A. P., Price, N. L., Ling, A. J., Moslehi, J. J., Montgomery, M. K., Rajman, L., … & Mercken, E. M. (2013). Declining NAD+ induces a pseudohypoxic state disrupting nuclear-mitochondrial communication during aging. Cell, 155(7), 1624-1638.

[3] Zhang, H., Ryu, D., Wu, Y., Gariani, K., Wang, X., Luan, P., … & Schoonjans, K. (2016). NAD+ repletion improves mitochondrial and stem cell function and enhances life span in mice. Science, 352(6292), 1436-1443.

[4] Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., … & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139.

[5] Schultz, M. B., & Sinclair, D. A. (2016). Why NAD+ declines during aging: It’s destroyed. Cell metabolism, 23(6), 965-966.

[6] Escande, C., Nin, V., Price, N. L., Capellini, V., Gomes, A. P., Barbosa, M. T., … & Chini, E. N. (2013). Flavonoid apigenin is an inhibitor of the NAD+ ase CD38: implications for cellular NAD+ metabolism, protein acetylation, and treatment of metabolic syndrome. Diabetes, 62(4), 1084-1093.

[7] Camacho-Pereira, J., Tarragó, M. G., Chini, C. C., Nin, V., Escande, C., Warner, G. M., … & Chini, E. N. (2016). CD38 dictates age-related NAD decline and mitochondrial dysfunction through an SIRT3-dependent mechanism. Cell metabolism, 23(6), 1127-1139.

[8] Lee, C. U., Song, E. K., Yoo, C. H., Kwak, Y. K., & Han, M. K. (2012). Lipopolysaccharide induces CD38 expression and solubilization in J774 macrophage cells. Molecules and cells, 34(6), 573-576.

[9] Musso, T., Deaglio, S., Franco, L., Calosso, L., Badolato, R., Garbarino, G., … & Malavasi, F. (2001). CD38 expression and functional activities are up‐regulated by IFN‐γ on human monocytes and monocytic cell lines. Journal of leukocyte biology, 69(4), 605-612.

[10] Sun, L., Iqbal, J., Zaidi, S., Zhu, L. L., Zhang, X., Peng, Y., … & Zaidi, M. (2006). Structure and functional regulation of the CD38 promoter. Biochemical and biophysical research communications, 341(3), 804-809.

[11] Yamamoto-Katayama, S., Ariyoshi, M., Ishihara, K., Hirano, T., Jingami, H., & Morikawa, K. (2002). Crystallographic studies on human BST-1/CD157 with ADP-ribosyl cyclase and NAD glycohydrolase activities1. Journal of molecular biology, 316(3), 711-723.

Undoing Aging With Aubrey de Grey Part Three

Welcome to part three and the final part of our SENS Undoing Aging 2018 interview; we have a few more scientific questions today for Aubrey and his team as well as questions about future developments and taking new therapies to market.

Dr. de Grey, has your position on the relevance of telomere attrition changed since you first devised SENS, especially in the light of the recent results with fibrosis and your involvement with AgeX?

Aubrey: No. Let’s start with the big picture. Neither I nor anyone sensible has ever suggested that telomere attrition has no functional effects in aging: telomere attrition causes cells to become senescent and runs down the proliferative capacity of stem cells, amongst other things. Nor have I suggested that there wouldn’t be some short-term health benefits to activating telomerase or telomerase gene therapy in aging animals or animal models of age-related disease (or even their human equivalents). Indeed, there was plenty of animal data to support this long before the recent results with a mouse model of idiopathic pulmonary fibrosis (IPF)[1].

The issue is rather that those short-term benefits come with the longer-term (and sometimes not so long-term) risk of increased rates of cancer — something that has been in multiple animal studies (also here, here, here and here) as well as in human epidemiology.

So, why don’t we see a plague of excess cancers in animal studies that show the benefits of telomerase-based treatments? Depending on the study, it’s one or more of four reasons. The most common one is that such studies are usually too short-term: a few weeks or months, which is long enough for the benefits of mobilizing stem cells to help repair some particular problem in an aged or disease-model mouse, but not long enough for a precancerous lesion to erupt into mature clinical cancer. This was true in the IPF study you reference, which lasted just eight weeks [1].

A related issue is that many of these studies involving animal models of age-related disease are actually done in quite young animals that have been damaged in some way that simulates aspects of an age-related disease. Because such animals are still quite young, they haven’t yet lived long enough to have accumulated a high burden of the kinds of mutations that predispose cells to become cancerous, so it’s much less likely that telomerase will enable precancerous cells to develop into full-blown cancers. This, again, was true in the IPF study, which involved animals that were little furry teenagers, only 8-10 weeks old [1]. By contrast, the average age of onset of human IPF is 67, and nearly all human IPF patients are over the age of 50. (We’ll get into how they made these adolescent mice develop something resembling IPF a little further along).

At the ages when IPF and other age-related pathology that might otherwise benefit from telomerase treatments emerge in humans, the human body has already acquired multiple cancer-disposing lesions, and most people harbor precancerous cells in their breasts, prostate, and elsewhere. Indeed, autopsy studies show that 30-45% of men who die of other causes in their fifties have actual prostate cancers in their bodies, not just precancerous lesions; their disease just hadn’t yet become aggressive enough to kill them before something else did [2].

Extended over the decades of current human middle age and into the early period of lifespans extended by the first rejuvenation biotechnologies, telomerase activation can be strongly expected to give precancerous and indolent cancerous cells that might otherwise have run out of replicative steam the extra rounds of proliferation needed to gain the mutations that will turn them malignant and ravage the body. Again, this is what we actually see in longer-term studies in aging mice administered extra telomerase and in humans with more permissive telomerase variants.

A third reason why many animal studies of telomerase treatments don’t result in high reported rates of cancer is that the animals may actually be deficient in telomerase to begin with, such that telomerase gene therapies actually just restore the normal activity of telomerase in the animals. This again was a feature of the mouse IPF study: these were mice with their normal telomerase genes completely knocked out, which were then bred for two additional generations to progressively wear down the residual telomeres in their stem cells (and then had DNA-damaging bleomycin applied down their tracheas to their lungs to boot!) [1]. In fact, their original publication reporting that this generated a working model of IPF was even entitled “Mice with pulmonary fibrosis driven by telomere dysfunction”! [3]

When you start off by taking the normal telomerase gene away from a mouse, it’s not exactly surprising that putting that same telomerase gene back in the same mouse ameliorates its short-telomere-driven pathology. The same was true of another study in telomerase-deficient mice that was widely and mistakenly reported in the popular press as showing the “rejuvenating” effects of telomerase therapy [4].

Finally, a significant number of studies where telomerase treatments are shown to have benefits and aren’t reported to have high rates of cancer are done in animals that are made cancer-resistant by other means, such as by giving them extra copies of cancer-resistance genes [5] or by imposing CR on them [6].

The solution to problems caused by age-related attrition of telomeres is not to juice up telomerase to lengthen them again in often-damaged stem cells, but to take telomerase out of the picture, purge those defective stem cells, and replenish stem cell pools periodically with cancer-proofed, pristine replacement cells that are unable to replicate out of control.

Could someone from SENS explain why phiC31 integrases are still important in the age of CRISPR? Looking at the Calos Labs webpage, it is not clear that there is any real advantage to using phage integrases.

Aubrey: Let’s start with what the CRISPR/Cas9 system is good for before explaining why it won’t be much help for rejuvenation biotechnology. CRISPR/Cas9 is an amazing tool for making relatively modest edits in existing genes in isolated cells. This makes it great for things where we can take a few of a patient’s cells out of his or her body, correct a mutation or make similar minor changes, and then reintroduce them. So, for instance, it’s incredibly powerful for genetic diseases involving blood cells, because we can take out some of a patient’s bone marrow stem cells, make the minor edits required to correct the genetic defect, and then wipe out the patient’s original, defective bone marrow using chemotherapy and repopulate it with modified stem cells, which will then replace the entire blood cell system.

It can also be used to create mutant animal models, by making minor edits in embryos (which are, again, single cells or only a few of them) and then growing out a mature organism, every one of whose cells contains the modified gene. And as the technology matures, and with better delivery systems, it could also be used to correct other relatively minor mutations that cause very early-onset versions of diseases of aging, like the ApoEε4 allele (which greatly speeds the onset and course of Alzheimer’s disease) or the BRCA1 and BRCA2 mutations that put one at higher risk for breast, ovarian and possibly prostate cancer.

But in order to deliver rejuvenation biotechnologies, we need to do something quite different: deliver large, entirely new genes across tissues still in the body. For such purposes, CRISPR/Cas9 is really not much help. (For some of the technical details on why, see here — skip down to “As to the CRISPR/Cas9 system”). Reserchers are working to improve on all of CRISPR/Cas9’s limitations, but it’s not at all clear that it will ever be able to go as far as needed for most rejuvenation biotechnologies. Calos’ webpage doesn’t highlight the key contrast the way we do because, as it stands, it’s a bit of a moot question; we can’t use the phiC31 integrase clinically because we don’t have the needed “landing pads” for the integrase in our cells. And that’s exactly what the second stage of the Maximally-Modifiable Mouse project is for: to eventually engineer those “landing pads” into all of our cells, at which point we’d be able to use the integrase for safe, reliable delivery of arbitrarily-large new genes across adult tissues.

You have been engineering glucosepane-eating bacteria that use enzymes effectively ‘gifted’ to them. Have the enzymes you identified demonstrated specificity to glucosepane?

Aubrey: We can say that Dr. David Spiegel’s SRF-funded lab at Yale has identified some candidates, but we can’t go into the details at this time.

Dr. de Grey, can you make any estimates as to the name and/or date of creation of the company spun out to market glucosepane breakers?

Aubrey: First, to break this down a bit: spinoff companies don’t actually market therapeutics; they don’t have the size or the resources (legal, clinical, or financial) to run the large-scale phase III clinical trials required to gain licensure from the FDA and similar regulators around the world and then mass-manufacture a therapy for global distribution, this latter being especially challenging for biologicals like antibodies and cell therapies (which is the form that most rejuvenation biotechnologies will take, as opposed to conventional small-molecule drugs). So, we wouldn’t be literally spinning out a company to market glucosepane breakers. The spinoff will take research that has identified a strong candidate glucosepane-breaker and demonstrated its efficacy in initial proof-of-concept research and do some further R&D (perhaps taking it as far as initial phase I trials) until they are ready to begin courting the large pharma/biotech players who bring their much larger resources and wider expertise to bear in late-stage clinical development and marketing.

As mentioned in response to another question, Dr. David Spiegel’s SRF-funded research has identified some early-stage candidates, but none that are solid enough for a spin off company just yet; that said, do expect some news on the commercialization front in the glucosepane space in coming months.

A question for Dr. O’Connor about MitoSENS: We recently heard that your team was close to four of the thirteen genes. Can you tell us how you are progressing with the mitochondrial gene transfers?

Oki: We are working on several other genes. Nothing solid enough to announce yet, but I think we’ll have some new things to announce at Undoing Aging 2018.

Dr. O’Connor, has anyone else than SRF tried to replicate the results of your 2016 paper on allotopic expression or tried to do the same with other mitochondrial genes?

Oki: I’ve passed our materials on to several researchers who have requested them, and we also made our plasmids publically available through Addgene. So, it looks like there is some interest in repeating our work, but I haven’t heard about any results yet.

RMR, or robust mouse rejuvenation, is intended to be a SENS implementation that is complete enough to double the remaining life expectancy of an elderly mouse, as demonstrated and then replicated in rigorous laboratory studies. Given the current state of research and funding and the current rate of progress, what is the expected timeframe for RMR?

Aubrey: This is difficult to say, and, as you say, is always heavily dependent on funding levels. So far, insufficient funding has held us back to going less than half as fast as I had predicted was possible with full funding. Granted adequate funding going forward, a reasonable if still-speculative estimate would be seven years.

Given the state of immunotherapy, and taking into account the rate of progress in the field, how confident are you that OncoSENS may be unnecessary? Even if not soon, do you think it’s possible that cancer could ever be completely defeated without implementing OncoSENS, i.e. without deleting the telomerase and ALT genes?

Aubrey: The recent progress in cancer immunotherapy has certainly made me much more optimistic than I was five years ago that new cancer therapies might hold off cancer for more than a very small number of years — but not that it might make WILT redundant. If we had all the other components of a comprehensive panel of rejuvenation biotechnologies assembled and deployed, ongoing progress with these therapies might well give us a slightly longer runway along the path to “longevity escape velocity” than I had expected at the time. But only slightly; within an all-too-short few additional years, I expect that without WILT, the surging rocket of “longevity escape velocity” will still run headlong into a wall of cancer until we have a way to definitively defeat its evolutionary engine of selection and replication. At present, WILT is the sole foreseeable approach to doing that.

What single item or reagent used in research (exempting wages) costs the most across research projects?

Aubrey: Probably Fetal Bovine Serum. It’s necessary for all cell culture projects, and you can’t skimp on the price since cells are so sensitive — and no one has figured out how to make it well without requiring the expensive initial animal involvement.

SRF showed that it is possible to degrade oxidized cholesterol using external enzymes from bacterial sources. Has there been any other progress in this direction? In other words, how is LysoSENS research progressing against this particular kind of intracellular aggregate?

Aubrey: We licensed out the original research to which you refer several years ago, and we don’t have much visibility into what the company in question is up to. I can also say that we’re aware of a very promising LysoSENS project working at the problem from a quite different and novel angle, but can’t make any announcements at this time.

Which rejuvenation treatments can we reasonably expect to reach the clinic first? Assuming ideal conditions, when could the more easily implementable among them be expected to be tested and approved for human use?

Aubrey: If you don’t count stem cell therapies (some of which are in clinical use, but not as rejuvenation biotechnology), it’s a race between ablating senescent cells with senolytics (with UNITY Biotechnology expected to perform their first-in-human trials early next year) and one of the many immunotherapies targeting the intracellular or extracellular aggregates that drive the neurodegenerative diseases of aging.

When a branch of the basic research done at SENS goes far enough that it becomes commercially interesting and could spawn a new therapy, is it conceivable to convert SENS to a for-profit organization and seek investments? Why do you choose to start new companies instead of taking the Elon Musk approach of using discoveries for profit and financing basic research with the money? Would it be possible to only involve investors who understand this vision?

Aubrey: The Foundation itself won’t become a for-profit organization, though we have, in the past, spun out individual projects as startups or sold them to investors once they were ripe enough to be carried forward on that basis, and we will continue to do so in the future. Examples include licensing our funded LysoSENS project on 7-ketocholesterol to Human Rejuvenation Technologies, Inc. and licensing our LysoSENS project on A2E to Ichor Therapeutics.

We also provided seed capital to senescent cell ablation startup Oisín Biotechnologies, and work that we have supported was also the basis of the MitoSENS technology behind Gensight Biologics; the AmyloSENS technology targeting senile cardiac amyloidosis that is part of Covalent Bioscience’s portfolio; and Revel LLC, which is in the process of commercializing products emerging from Dr. David Spiegel’s SRF-funded research on glucosepane at Yale. Once these therapies are turned into therapies that are on the market and earning revenues, we will earn royalties and similar monies which we’ll roll into other important areas of SENS research.

However, the Foundation itself will not become a for-profit venture, because doing so would interfere with our ability to pursue our mission: to catalyze the development of a comprehensive platform of rejuvenation biotechnologies. While we’re always looking for opportunities for true blind spots in rejuvenation biotechnologies that can be quickly nudged into proofs-of-concept ready to be spun out into startups with just a little more support, it’s also critical that we invest in planks of the SENS platform that are in much earlier stages of development. And it’s essentially impossible to run a sustainable for-profit enterprise doing such early-stage research. Investors don’t have the patience for the long lead times and uncertainty that yawns between putting down the money and an IPO or full-on commercialization.

Even the true giants of the legacy pharmaceutical industry — who were once able to support significant amounts of relatively early-stage work in-house because of their enormous budgets and soaring profitability — have been in rapid retreat from that model for decades now, shutting down in-house research campuses in favor of buying up startups. On the other end, Elon Musk’s admirable and disruptive ventures — SpaceX, Tesla, and SolarCity — are doing mission-driven work in commercializing and innovating technologies that were already on the market, the early-stage work having already been done (and continues to be done) in university labs, the National Laboratories, and Advanced Research Projects-Energy (ARPA-E).

The best places for early-stage work to be done has always been university labs or not-for-profit research facilities supported by major government health institutes like the NIH, or by philanthropy, where the funding can be allocated and lines of research pursued based on merit and long-term considerations free from investor pressures.

Additionally, a critical part of our work in getting us to a future beyond degenerative aging is our efforts to nurture an entire rejuvenation biotechnology ecosystem, not just the direct sponsorship of research projects aimed at developing individual therapies. This is why we place young students into opportunities for rejuvenation research as part of their academic training through SRF Education; why we bring together academic researchers working in disparate strands of rejuvenation research who labor in ignorance of each others’ work at the Strategies for Engineered Negligible Senescence conferences (and the upcoming Undoing Aging conference); and why we bring some of those same researchers together with investors and the existing biotech industry at the more industry-oriented Rejuvenation Biotechnology conference series. Such work simply can’t be justified to venture capitalists looking for the next IPO payout.

Similarly, companies already close to SENS, such as Unity, could apply the strategy of funding more basic research using profits. Are any of these companies planning to do this?

Aubrey: Note that in this case, UNITY Biotechnology is supporting additional work on the intellectual property that they have themselves licensed from Campisi’s and others’ labs, and on small molecules that they have acquired and identified independently of any of the investigators whose IP they have licensed; they are not disbursing funds that can be reallocated into other kinds of research, which (again) is key to the ongoing progress of SRF. That’s a model to which we’re certainly open, and we will negotiate on a case-by-case basis as opportunities arise.

Once a significant part of the science work behind rejuvenation has been done and spun off to other companies, does SRF plan to fade out, or is there any plan to work with policy-makers and institutions to ensure rapid and widespread access to rejuvenation treatments?

Aubrey: The latter! However, the moment to make the shift from development to distribution and access is likely somewhat later in the process than when you suggest; depending on how the industry evolves, it would more likely be either when it is clear that the “damage-repair” heuristic of SENS has become accepted as the dominant paradigm for tackling diseases of aging or when the individual components of a comprehensive panel of rejuvenation biotechnologies have all been licensed and are being used to treat people who do not yet have obvious age-related pathology. At that point, the research needed to carry us forward will be self-sustaining, and the pressing issue of the day will be making sure that therapies become widely and justly available as rapidly as possible.

We would like to thank Dr. Aubrey de Grey and the SENS Research Foundation team for taking the time to answer all these questions, and we look forward to catching up with you again in the near future. You can find part one and part two of this interview by following the linked text.

Literature

[1] Povedano, J. M., Martinez, P., Serrano, R., Tejera, Á., Gómez-López, G., Bobadilla, M., … & Blasco, M. A. (2018). Therapeutic effects of telomerase in mice with pulmonary fibrosis induced by damage to the lungs and short telomeres. eLife, 7, e31299.

[2] Martin, R. M. (2007). Commentary: Prostate cancer is omnipresent, but should we screen for it?. International journal of epidemiology, 36(2), 278-281.

[3] Povedano, J. M., Martinez, P., Flores, J. M., Mulero, F., & Blasco, M. A. (2015). Mice with pulmonary fibrosis driven by telomere dysfunction. Cell reports, 12(2), 286-299.

[4] Jaskelioff, M., Muller, F. L., Paik, J. H., Thomas, E., Jiang, S., Adams, A. C., … & Horner, J. W. (2011). Telomerase reactivation reverses tissue degeneration in aged telomerase-deficient mice. Nature, 469(7328), 102.

[5] Tomás-Loba, A., Flores, I., Fernández-Marcos, P. J., Cayuela, M. L., Maraver, A., Tejera, A., … & Viña, J. (2008). Telomerase reverse transcriptase delays aging in cancer-resistant mice. Cell, 135(4), 609-622.

[6] Vera, E., de Jesus, B. B., Foronda, M., Flores, J. M., & Blasco, M. A. (2013). Telomerase reverse transcriptase synergizes with calorie restriction to increase health span and extend mouse longevity. PLoS One, 8(1), e53760.

Undoing Aging With Aubrey de Grey Part Two

Welcome to part two of our three-part Undoing Aging 2018 interview of Dr. Aubrey de Grey and his team at SENS Research Foundation. Today, we have some of the scientific questions that the community had about SENS; there are some very detailed responses, and we hope you enjoy them.

Regarding the use of senolytics, are you concerned about their potential to remove highly specialized cells like cardiomyocytes, which do not divide or do so very slowly? Could taking senolytics without the ability to replace these specialized lost cells be risky unless combined with replacement therapies?

Aubrey: This is not a major concern, for a few reasons. First, when cells turn senescent, they cease carrying out their specialized function (as a cardiomyocyte, or neuron, or what have you), so no such function is lost by ablating them. Second, cells that don’t divide (like cardiomyocytes and neurons) are far less likely to become senescent in the first place than cell types that divide; many of the main drivers of senescence are related to cell division. And third, in the specific case of cardiomyocytes, there’s already significant evidence in rodents that it improves cardiac function overall [1] as well as wider cardiovascular health [2-3].

However, there is some reason for concern here, which is why we’re already working to develop the next generation of senescent cell ablation therapies. The selectivity of senolytic drugs for senescent cells comes from the fact that they target the activity or expression of genes involved in cell survival, on which senescent cells are much more reliant than healthy cells under normal, unstressed conditions. But during times in which the cell is under stress, normal cells also rely on those same pathways to carry them through and give them time to recover. Thus, although the net effect of these drugs is undeniably positive, their mechanism of action will necessarily entail occasionally killing off healthy cells that are experiencing a moment of vulnerability when the drug is administered and that they could otherwise have survived. Again, such cells could include difficult-to-replace cells like heart muscle cells and neurons.

Future therapies can target truly senescent cells more selectively, and SENS Research Foundation is helping to advance those next-generation senescent cell therapies even as UNITY prepares for human testing through our investment in Oisín Biotechnologies. We’ll have more to say on this in an upcoming blog post.

But. certainly, no single rejuvenation biotechnology will work as well on its own as it will as part of a comprehensive panel of such biotechnologies, and matching senescent cell ablation with cell replacement therapies is one of the most straightforward examples.

Senolytic drugs gave mice about 35% increased healthy lifespan in experiments. Given that every living organism produces senescent cells the same way, could this mean that it may translate to humans?

Aubrey: First, let’s be clear on just what senescent cell ablation has been shown to do. In the study of which you’re thinking [4], senescent cell ablation didn’t extend lifespans by 35%; it increased median lifespan by 24-27% under most conditions, with no effect on maximum lifespan. It only increased median lifespan by 35% in a subset of animals where the controls were exceptionally short-lived compared to all the other animals in the study. (In fact, all the animals in the study were at least a bit shorter-lived than healthy mice normally are, probably due to some combination of the stress of twice-weekly injections and possibly some effect of the transgenes, though the latter is probably minor — but the 35% figure is clearly not robust and certainly shouldn’t be extrapolated to normal, otherwise-healthy aging humans).

Now, confining ourselves to that 24-27% median lifespan figure: interventions that lead to gains in median lifespan only in laboratory mice, with no corresponding effect on a robust maximum lifespan (tenth-decile survivorship), still need to be heavily discounted when speculating on effects in humans. Interventions that only affect median lifespan primarily affect deaths in the first half of the lifespan — and here there is a critical difference between mice in a lab and modern humans, for whom medicine has already eliminated many causes of such early deaths, from vaccines (which also impact late-life mortality by reducing lifelong inflammatory burden), to surgery, to antibiotics, to drugs that more obviously affect middle-aged people.

The force of this reasoning is somewhat attenuated in the case of interventions like senescent cell clearance, which actually repair aging damage, than with interventions affecting environmental or metabolic risk factors driving “premature” disease (obesity, inflammation, cardiovascular risk factors, environmental toxins, etc). Still, you have to assume that the effect on lifespan of any single damage-repair intervention in isolation will be modest, based on the principle of the “weakest link in the chain”: all the links are weakening over time, and shoring up only one of them still leaves the rest of the links damaged and ready to shear, whereupon the whole chain is broken. To move the needle on lifespan in modern humans, we have to push back on all of the cellular and molecular damage of aging, not just one form.

Are senescent cells fewer in number or less destructive in humans than in other animals because we are more advanced organisms than they are?

Aubrey: Evolutionary biologists would quibble with the notion that humans are “more advanced” organisms than mice (or even than roundworms), but we’re certainly longer-lived organisms than they are — and of necessity, this entails that the rate of accumulation of all the cellular and molecular damage of aging — including senescent cells — is slower in us than in them.

Some proteins can facilitate DNA repair. However, what can SENS do to prevent cells from collecting DNA damage in addition to the proteins that already exist in our body? Also, what approaches are being taken to correct benign mutations?

Aubrey: Because the levels or activity of some of the proteins that repair DNA are downregulated by the downstream metabolic effects of aging damage (such as inflammation and oxidative stress), or are known to be downregulated with age for unknown reasons, removing the underlying damage driving these age-related declines (such as by ablating senescent cells and rendering mitochondrial mutations harmless)  will “take the brakes off” these proteins and restore their ability to repair DNA to the youthful norm, just as rejuvenation biotechnology will reset other downstream derangements of the aging metabolism.

By “benign mutations,” I take it that you mean mutations that don’t cause cancer. Regardless, there is no foreseeable technology (meaning, a technology that can be described in detail and is technically feasible to implement within the next 2-3 decades) that will be able to correct existing mutations. Instead, the focus must be on removing, repairing, or obviating the effects of mutations that are relevant to our health over the course of currently-normal lifespans: clearing senescent cells, replacing cells lost to apoptosis and senescence and other causes, and making the body impervious to cancer. That will buy us time during which scientists can develop future generations of rejuvenation biotechnology to repair DNA mutations directly.

Regarding the breakdown of extracellular aggregates, what will you do if the first wave of treatments using antibodies is unable to repair the whole system?

Aubrey: Certainly, it’s guaranteed that no first-generation SENS therapy will be able to repair every single contributor to any given category of aging damage — and it doesn’t have to. All we have to do to reach “longevity escape velocity“ is to remove or repair the specific forms of cellular and molecular aging damage within each category that meaningfully restrict our lives to the extremes of current lifespans. During the extra decades of healthy life that we’ll then enjoy, scientists can then work to identify the constraints that limit life- and healthspan to those newly-expanded horizons.

Accordingly, all SENS therapies will need to be iteratively improved; we will want safer and more effective ways to repair the damage targeted by earlier iterations of rejuvenation biotechnologies and also to repair additional specific targets within each category. It’s only once those first therapies are developed and in use that we’ll know what their specific limitations will be; what the relative prioritization and, in most cases, even the identities of the next-most important targets will be (our project on Target Prioritization of Adventitious Tissue Crosslinking is tackling a notable exception); and how exactly to design improved or new therapies in each category.

In old age, the vitreous body—an acellular component of the eye—liquifies. The resulting change in viscosity may cause a post-vitreous detachment that can be dangerous for the retina. Where does the relevant age-related damage fit within the SENS categorization? What regenerative interventions might be applied to reverse it?

Aubrey: As with all age-related degeneration, post-vitreous detachment (PVD) can only ultimately flow from stable changes in the cellular and molecular structures responsible for normal, youthful vitreous function. However, the structural basis for PVD is unfortunately still poorly understood. Up until recently, it’s been difficult to study the organ at all, let alone its aging, because of the inherent difficulty of visualizing a tissue that is, by design, invisible and because many of the techniques that have historically been used to study it have required the use of reagents that precipitate the jelly-like material out of the vitreous humor [5]. And even today, with better tools available, there is precious little research in this area.

But let’s focus on what we do know. The vitreous is composed of a network of collagen fibres that are coated by non-covalently bound structural molecules (glycoproteins and chondroitin sulfate) that allow the collagen fibers to slide past one another without sticking to each other and also to interact with the gel phase of the vitreous (primarily comprised of a glycoprotein called hyaluronan). In youth, most of the hyaluronan remains in a gel phase, but over the lifespan, a rising amount of it is degraded into a liquid phase. This degenerative process is already apparent in four-year-old children, and liquid-phase vitreous occupies about 20% of the total vitreous volume by the time one is in one’s late teens; this process accelerates after age 40, to the point where more than half the vitreous has been degraded into a liquid in octogenarians. Along with the shift from gel phase to liquid phase, there is a reduction in the volume of gel vitreous, without a change in total collagen until the extremes of current lifetimes [5].

As the gel shrinks, it begins to separate from the retina, with the gap filled by the accumulated liquid vitreous. If this process of separation happens too quickly in a given area, or if the vitreous gel and the retina remain adherent despite the contraction of the vitreous, then the retina or a retinal blood vessel can tear, leading to symptoms like “flashes” and “floaters.”

As of yet, we don’t know what’s driving these processes. The most suspicious change in the structure of the vitreous with age is the “lateral aggregation” of the collagen fibrils — in other words, the bunching-together of adjacent collagen fibrils. The two prime suspects for this aggregation are age-related loss of the coating proteins that keep the collagen fibrils from naturally sticking to their neighbors, and AGE or other crosslinks forming between the fibrils.

Abnormal AGE crosslinks certainly do occur in the collagen in the vitreous of diabetics, which likely contributes to diabetic retinopathy, an important complication in diabetes that leads to blindness [5]. To the extent that those are involved in PVD in aging nondiabetics, AGE-breakers could be brought to bear to liberate the bound collagen fibrils, allowing them to support gel-phase vitreous hyaluronan again.

Alternatively, the aggregation may result from an age-related loss of the coating proteins that keep the fibrils from sticking together [6]. There are several protein-degrading enzymes in the vitreous that could, in principle, do this if their expression rises with age, and aggregation and liquefaction can be triggered in the lab by injecting any of several common physiologic enzymes into the vitreous. Conversely, peptides have been designed that shield the coating proteins from some of these enzymes; these peptides have protective effects against degradation of bovine vitreous treated with some suspect enzymes, but not others [7].

Along with trypsin, matrix metalloproteinases (MMPs) are among the enzymes most strongly suspected of involvement in an age-related rise in such “stripping” of vitreous collagen [6]. While the link has not been directly made, several lines of circumstantial evidence suggest that a rise in MMP levels with age could be driven by the accumulation of senescent cells in the eye. Senescent cells do accumulate in the retina and other ocular tissues with age, and MMPs are a component of the toxic soup that senescent cells secrete — the so-called senescence-associated secretory phenotype or SASP. And while they didn’t look specifically at MMPs, one study did find increased levels of other components of the SASP in the vitreous of patients suffering from proliferative diabetic retinopathy [8]. If senescent cells are indeed driving an age-related rise in collagen-stripping MMPs, then ablating those cells would put a stop to it, potentially preventing or reversing PVD.

Another possible contributor to PVD is damage to hyaluronan molecules by free radicals, which warp the three-dimensional structure of hyaluronan in model systems. Lifelong exposure to free radicals from metabolic processes and/or ultraviolet light could cause structural changes that either cause gel-phase hyaluronan to dissociate from collagen fibrils or damage hyaluronan decorating adjacent collagen fibrils so that they no longer slide past each other but instead aggregate, leading to liquefaction and PVD [5]. Rendering mitochondrial mutations harmless would eliminate the main driver of the age-related rise in oxidative stress.

Again, none of this is certain; experts don’t know for sure what’s driving the damage underlying PVD, and we’ll need to understand that in order to know what rejuvenation biotechnologies will prevent and treat it. But as with all diseases and disorders of aging, structural changes are driving it, and structural remediation will be the key to ending it; looking at the existing lineup of suspects, it appears that all can be addressed with therapies that contribute to planks of the existing SENS platform.

Increased anabolic signalling, which signals an abundance of nutrients, appears to accelerate aging, while decreased anabolic signalling is shown to extend lifespan. Does this suggest that excessive caloric intake accelerates aging and that a reduced intake may slow it down? If so, may practices such as bodybuilding, which require significant food intake, lead to accelerated aging?

Aubrey: Anabolic signalling is one important driver of the cellular and molecular damage that accumulates over a lifetime, leading ultimately to age-related pathology. This is even true of the normative physiological level of anabolism that supports processes like normal growth and development; wound healing and other regenerative responses; and maintenance of a lean adult body plan. And many interventions that decrease anabolic signalling below this physiologic level meaningfully slow aging in rodents and other relatively short-lived animals; reducing energy intake (i.e., calorie restriction (CR)) and mutations in insulin-like growth factor-1 (IGF-1) pathway are well-known examples.

However, even in rodents, it’s not clear that increasing anabolic signalling above the normative physiological level hastens aging relative to the base case. Obesity, of course, is bad for your health, whether you’re a (wo)man or a mouse — but it’s not clear that the reason it’s harmful is just a matter of “more of the same” anabolic stimuli that contribute to aging in the base case, rather than primarily a distinct pathophysiological process. And the ill-health of obesity is clearly not the simple inverse of the slow-aging phenomenon of low-anabolic states like CR. Further complicating matters, it’s important to bear in mind that there is significant debate as to whether the age-retarding effects of low-anabolic states like CR meaningfully impact aging in humans or other long-lived species [9-10].

Of course, bodybuilders are both lean and have high energy intake. This is also true of endurance athletes, and it’s clear in both rodents and humans that endurance exercise is healthy and does not appear to either accelerate or decelerate aging. The data are significantly more sparse as regards the specific effects of bodybuilding. It’s a difficult kind of activity to model in rodents, and it’s also more difficult to study in the long term in free-living humans than endurance exercises like running: fewer people bodybuild, they are less likely to carry on with it past middle age, there is greater variation in training routines, and the data are confounded by the prevalent abuse of anabolic steroids and other drugs, even among amateurs.

Whatever its effects on “aging itself,” there’s certainly compelling evidence that modest levels of strength training are good for your long-term health, associated with similar or lower risk of mortality as compared with endurance exercise [11], although elite bodybuilders may lose some of its benefits [12-14]. A sensible approach would be to pursue strength training without seeking to push the limits of your genetic potential through very high energy and protein intake or the use of anabolic steroids or IGF-1; this will improve your insulin sensitivity and reduce your risk of osteoporosis and premature frailty, with less risk of injury or truly harmful levels of anabolic signaling.

Has SENS/Aubrey reviewed their position that nuclear mutations matter only in cancer in light of recent research results suggesting that certain ominous mutations in hematopoietic stem cells increase the risk of developing not only blood cancers (50 fold) but dying of all causes (by 40%), particularly cardiovascular diseases, including atherosclerosis and stroke?

Aubrey: The research on this “clonal hematopoiesis” phenomenon is certainly provocative but doesn’t ultimately change our view on this question. Remember first that it has never been our position that nuclear mutations matter only in causing cancer; at a minimum, they also matter in causing apoptosis (“cellular suicide,” which denudes the body of functional cells with age, most importantly stem cells) and cellular senescence (ditto, plus the baleful effects of the SASP). And then remember that SENS is fundamentally an engineering approach to aging, focused on practical solutions rather than acquiring a full understanding of mechanistic details. Our position has been, therefore, that all the effects of nuclear mutations that meaningfully constrain current human lifespan/healthspan can be obviated by removing, repairing, or obviating the effects of mutations that are relevant to our health over the course of currently-normal lifespans: clearing senescent cells, replacing cells lost to apoptosis and senescence and other causes, and making the body impervious to cancer.

In clonal hematopoiesis, blood stem cells with one of a small number of mutations gain a selective advantage over blood stem cells with other genotypes, which allows them to “take over” the stem cell compartment. [15] This isn’t exactly what an oncologist would call “cancer,” but it is a clear case of “cells too many” caused by nuclear mutations proliferating at the expense of their neighbors, which fits the operational criteria for the oncoSENS category. And the periodic purging of all native bone marrow stem cells and their wholesale replacement with fresh, mutation-free, cancer-proof ones — which would immediately eliminate clonal hematopoiesis — is already planned to be the very first clinical phase of the WILT plan to pre-emptively shut down cancer.

Even before we begin implementing WILT, there are rejuvenation biotechnologies in the SENS platform that can minimize the harms that these aberrant cells are suspected of causing. In reported studies, the cause of the excess non-cancer mortality associated with clonal hematopoiesis has been death from cardiovascular disease and stroke [16-18]. In an accompanying animal study, the investigators showed that this could be accounted for by changes in the macrophages derived from bone marrow-bearing clonal hematopoiesis mutations; these macrophages express higher levels of inflammatory mediators that contribute to atherosclerosis than macrophages derived from normal bone marrow [9]. Work by independent researchers also finds that the gene whose loss is modelled in that study is essential to the differentiation of macrophages [19], which could be an additional mechanism.

Of course, atherosclerosis and stroke can be prevented by lysoSENS rejuvenation biotechnology: clearing the macrophage/foam cell lysosome of cholesterol waste products, ablating senescent arterial macrophages and smooth muscle cells, [2, 3] and to a lesser extent, reversing large artery stiffness. So, again, we have ways to deal with the harms that clonal hematopoiesis causes, despite having no medium-term prospects for reversing the underlying mutations.

Finally, it should also be emphasized that this phenomenon should not be extrapolated to other aging tissues. Clonal hematopoiesis is enabled by the very high genetic diversity of the blood stem cell compartment and its high rate of replication as compared to other tissues (even other stem cell compartments) — and even with those enabling characteristics, only about 10%–20% of people develop it by the time they are in their 70s [16]. No other non-cancerous cell types have this inherent potential for mutation-driven clonal expansion.

And while anecdotal, we should also note the case of a female supercentenarian whose exceptional longevity (by current, unremediated aging standards) was still possible despite having nearly all of her blood stem cell compartment dominated by two such clonal lines [19].

That concludes part two of our Undoing Aging 2018 interview; we’ll publish the third and final part tomorrow here on our blog. If you missed part one you can find it here.

Literature

[1] Zhu, Y., Tchkonia, T., Pirtskhalava, T., Gower, A. C., Ding, H., Giorgadze, N., … & O’hara, S. P. (2015). The Achilles’ heel of senescent cells: from transcriptome to senolytic drugs. Aging cell, 14(4), 644-658. [2] Roos, Carolyn M., Bin Zhang, Allyson K. Palmer, Mikolaj B. Ogrodnik, Tamar Pirtskhalava, Nassir M. Thalji, Michael Hagler et al. “Chronic senolytic treatment alleviates established vasomotor dysfunction in aged or atherosclerotic mice.” Aging Cell 15, no. 5 (2016): 973-977. [3] Childs, B. G., Baker, D. J., Wijshake, T., Conover, C. A., Campisi, J., & Van Deursen, J. M. (2016). Senescent intimal foam cells are deleterious at all stages of atherosclerosis. Science, 354(6311), 472-477. [4] Baker, D. J., Childs, B. G., Durik, M., Wijers, M. E., Sieben, C. J., Zhong, J., … & Khazaie, K. (2016). Naturally occurring p16 Ink4a-positive cells shorten healthy lifespan. Nature, 530(7589), 184. [5] Sebag, J. (1992). Anatomy and pathology of the vitreo-retinal interface. Eye, 6(6), 541. [6] Bishop, P. N., Holmes, D. F., Kadler, K. E., McLeod, D., & Bos, K. J. (2004). Age-related changes on the surface of vitreous collagen fibrils. Investigative ophthalmology & visual science, 45(4), 1041-1046. [7] Zhang, Q., Filas, B. A., Roth, R., Heuser, J., Ma, N., Sharma, S., … & Shui, Y. B. (2014). Preservation of the structure of enzymatically-degraded bovine vitreous using synthetic proteoglycan mimics. Investigative ophthalmology & visual science, 55(12), 8153-8162. [8] Oubaha, M., Miloudi, K., Dejda, A., Guber, V., Mawambo, G., Germain, M. A., … & Mallette, F. A. (2016). Senescence-associated secretory phenotype contributes to pathological angiogenesis in retinopathy. Science translational medicine, 8(362), 362ra144-362ra144. [9] de Grey, A. D. (2005). The unfortunate influence of the weather on the rate of ageing: why human caloric restriction or its emulation may only extend life expectancy by 2–3 years. Gerontology, 51(2), 73-82. [10] Rae, M. J. (2006). You don’t need a weatherman: famines, evolution, and intervention into aging. Age, 28(1), 93-109. [11] Stamatakis, E., Lee, I. M., Bennie, J., Freeston, J., Hamer, M., O’Donovan, G., … & Mavros, Y. (2017). Does strength promoting exercise confer unique health benefits? A pooled analysis of eleven population cohorts with all-cause, cancer, and cardiovascular mortality endpoints. American journal of epidemiology. [12] Clarke, P. M., Walter, S. J., Hayen, A., Mallon, W. J., Heijmans, J., & Studdert, D. M. (2015). Survival of the fittest: retrospective cohort study of the longevity of Olympic medallists in the modern era. Br J Sports Med, 49(13), 898-902. [13] Teramoto, M., & Bungum, T. J. (2010). Mortality and longevity of elite athletes. Journal of Science and Medicine in Sport, 13(4), 410-416. [14] Sarna, S. E. P. P. O., Sahi, T., Koskenvuo, M. A. R. K. K. U., & Kaprio, J. A. A. K. K. O. (1993). Increased life expectancy of world class male athletes. Medicine and science in sports and exercise, 25(2), 237-244. [15] Jan, M., Ebert, B. L., & Jaiswal, S. (2017, January). Clonal hematopoiesis. In Seminars in hematology (Vol. 54, No. 1, pp. 43-50). [16] Jaiswal, S., Natarajan, P., Silver, A. J., Gibson, C. J., Bick, A. G., Shvartz, E., … & Baber, U. (2017). Clonal hematopoiesis and risk of atherosclerotic cardiovascular disease. New England Journal of Medicine, 377(2), 111-121. [17] Jaiswal, S., Fontanillas, P., Flannick, J., Manning, A., Grauman, P. V., Mar, B. G., … & Higgins, J. M. (2014). Age-related clonal hematopoiesis associated with adverse outcomes. New England Journal of Medicine, 371(26), 2488-2498. [18] Kallin, E. M., Rodríguez-Ubreva, J., Christensen, J., Cimmino, L., Aifantis, I., Helin, K., … & Graf, T. (2012). Tet2 facilitates the derepression of myeloid target genes during CEBPα-induced transdifferentiation of pre-B cells. Molecular cell, 48(2), 266-276. [19] Holstege, H., Pfeiffer, W., Sie, D., Hulsman, M., Nicholas, T. J., Lee, C. C., … & Meijers-Heijboer, H. (2014). Somatic mutations found in the healthy blood compartment of a 115-yr-old woman demonstrate oligoclonal hematopoiesis. Genome research, 24(5), 733-742.

Undoing Aging With Aubrey de Grey Part One

As the Undoing Aging 2018 Conference approaches, excitement and interest about the event are growing among both aging scientists and rejuvenation enthusiasts alike. If you’re a regular on our blog, neither Undoing Aging 2018’s main organizer, SENS Research Foundation, nor the main sponsor, Michael Greve’s Forever Healthy Foundation, need much of an introduction, but for the benefit of any newcomers, here’s a brief summary of all you need to know before diving into the questions that we’ve asked the SRF team on behalf of the members of the growing rejuvenation community.

SENS Research Foundation

SENS Research Foundation is a medical research charity based in California and the UK. A spin-off of the Methuselah Foundation, SRF is the engine room of research on biotechnologies against aging. Co-founded by Dr. Aubrey de Grey, the first proponent of the so-called “maintenance approach” to aging, the foundation has, over the years, funded and conducted cutting-edge research on the known root causes of aging, producing solid evidence that rejuvenation biotechnologies that can undo the damage of aging may be achievable within a few decades, given sufficient effort and funding.

Forever Healthy Foundation and the Undoing Aging 2018 Conference

Effort is not a problem; while initially controversial, the maintenance approach is now endorsed and pursued by some of the most eminent names of gerontology, not to mention the start-up companies that have spun off SRF itself or conduct SENS-related research. However, funding is still an issue, and this is where the Forever Healthy Foundation has stepped in.

The Forever Healthy Foundation’s stated goal is to be part of the first generation to cure aging. In order to achieve this ambitious goal, the foundation is actively investing significant sums into research and advocacy. The Undoing Aging 2018 Conference, to be held in Berlin on March 15-17, 2018, is part of the foundation’s outreach efforts. The event, open to everyone, will feature leading scientists from all over the world, and it is meant to offer a first-hand understanding of the current state of research in the emerging field of rejuvenation medicine.

The Undoing Aging 2018 SENS Interview Part One

We have been working with the life extension community on the Lifespan Discord server and collecting the best questions about research progress and developments in the field. Dr. Aubrey de Grey and other SRF team members kindly took the time to answer these questions for us. This is the first of our three-part Undoing Aging 2018 interview, which we will publish over three days in support of the Undoing Aging 2018 conference.

Why did you choose Berlin and not California or elsewhere in the USA for the event?

Aubrey: Basically, because the suggestion came from our main German donor, Michael Greve, who is also the conference’s main sponsor. Hard to argue with that!

Will the Undoing Aging conference 2018 be live-streamed and later have videos uploaded so that people can watch the conference at their convenience?

Aubrey: It won’t be live-streamed, but many of the presentations will be available for viewing on our website afterwards.

Can you explain what the motivation was for this show and, in particular, the change from the invite-only format to being open to the wider community?

Aubrey: It’s not really a change – more of a reversion to past practice. The RB conference last year was relatively small, and we wanted it to be available mostly to investors and opinion-formers, but we have in no way lost sight of the role of educated laypeople.

Is SRF planning to make Undoing Aging into a recurring event, much like the Rejuvenation Biotechnology conferences in America?

Aubrey: We’ll certainly be continuing to do both more science-centred events like Undoing Aging and the SENS Conferences, as well as more rejuvenation biotechnology industry-oriented events like the Rejuvenation Biotechnology series, but we haven’t yet decided on the sequence and orientation of future meetings.

With the Undoing Aging show this year, will there be an RB2018, or is this new show format replacing it?

Aubrey: We are still working on that question. We certainly want to maintain a strong conference presence in California, but it may be best to do that with smaller, more frequent events, such as the one we did with the California Life Sciences Association.

Recently, SRF has received significant donations amounting to over 7 million dollars. What priorities does SRF plan to address with this money?

Aubrey: First and foremost, we will be gearing up our existing programs in mitochondrial gene replacement, scaling up glucosepane research, rejuvenation biotechnology against cytosolic aggregates, and so on. We will also be initiating new ones; those are still being discussed with potential extramural collaborators, but you can expect some announcements later this year.

They will all be within the same seven-strand framework that has defined SENS since the beginning. And after having sometimes in the past allocated nearly all of our available research budget at the beginning of the fiscal year and thereby limiting our ability to take advantage of new opportunities that arose later in the year, we will be maintaining a research reserve fund so that we are always poised to get good work funded year-round.

For anyone reading this who is thinking about doing the same as our recent donors, I will just say that we are a very long way from running out of productive ways to invest more money.

What is the current status of the SENS Project 21?

Aubrey: Project 21 was created in order to give greater focus and exposure to our efforts to attract major donations from high-net-worth individuals. It is necessarily an initiative whose success is hard to measure for a while, since, by definition, such donations are very sporadic. However, with the receipt of so much in cryptocurrency over the past few months, nearly all of it in the form of four 7-digit donations, I think it’s fair to say that Project 21 is flourishing. We certainly hope that such donations will accelerate!

Is SRF trying to reach out to other celebrities than those already involved in the “Reimagine Aging” campaign? Are there any celebrities in particular whose endorsement may significantly help spread more awareness?

Aubrey: The Reimagine Aging celebrity campaign was a few years ago; we have not been focused on recruiting celebrities in recent years. We always welcome new people who can carry our message to a wide audience. As to individual celebrities, each person advocates for rejuvenation research and the vision of a future free of age-related debility and disease in their own way, bringing different personal symbolism or personal stories to their advocacy, and will thereby be compelling to different audiences.

How important do you think the work of organizations such as LEAF/Lifespan.io are in respect to their activities in advocacy and fundraising? Does our presence make your job easier?

Aubrey: Oh, it’s massive. Thank you so much for existing! I have always felt (and said) that the single biggest thing that this mission needs on the outreach side is diversity: that I can do what I can, but ultimately there are large audiences out there who just aren’t receptive to my way of saying things but who may be much more receptive to other voices saying materially the same thing. Also, we mustn’t forget the simple manpower aspect – like anyone else, I have only 24 hours in my day.

During our advocacy, we often find that people use terms like ‘immortality’ and ‘living forever’ to describe the work we are involved in. What influence do you think such words have on the credibility of the field and also on advocacy efforts?

Aubrey: I’ve been on the record for some time as saying that such terminology is not helpful. Most people who support biomedical intervention in aging who speak in such terms are using it in a stipulative sense to mean what they call “biological immortality” — by which they mean no manner of “immortality” at all, but rather a medical solution to end age-related debility and death. If that’s what they mean, they should just say so! To call this “immortality” (including “biological immortality”) simply confuses the discussion and makes people think that you’re saying things that you don’t mean. It reduces your credibility while also raising concerns that don’t apply to eliminating one very widespread and particularly terrible cause of death.

Policymakers are typically conservative towards disruptive biotechnologies, such as genetic engineering. How do you expect they will react once the first rejuvenation treatments are proven to work? Do you expect a lot of obstructionism, heavy regulations, and perhaps even attempts to ban these treatments, or do you think that politicians will understand the importance of rejuvenation without much need for lobbying from advocates?

Aubrey: Actually, I don’t expect significant amounts of either reaction. We’ve clearly seen already that the vast majority of people (whether bioethicists, or policymakers, or the person on the street) who express reservations about hypothetical therapies that would greatly extend life expectancy will nonetheless still express their support for therapies that would prevent or reverse individual, specific diseases of aging. But remember, rejuvenation biotechnology will not come in the form of a single, permanent ‘cure’ for aging like we have for many infectious diseases. Instead, there will be multiple rejuvenation biotechnologies, each targeting a different kind of cellular or molecular aging damage.

Because various specific diseases of aging are driven primarily by small subsets of such damage, individual rejuvenation biotechnologies will therefore initially appear as treatment and prophylaxis against those specific diseases, with relatively minor effects on life expectancy when considered in isolation. I am supremely confident that the support for each such therapy will be very strong and the opposition confined to a very small number of ever-more isolated ideological holdouts.

Additionally, remember that truly dramatic effects on life expectancy will — of mathematical necessity — not begin to manifest for decades after an entire panel of such therapies is widely available and in use as a comprehensive regimen. It is implausible that any strong constituency will arise in the intervening decades to insist that individual patients be denied any one of these therapies — let alone all of them — because of feared consequences for life expectancy and related social consequences decades into the future.

That concludes part one of our Undoing Aging 2018 interview; check out parts two and three, which we will publish here on our blog over the next two days.

Physical Activity Slows Aging of the Immune System

If you need yet another reason to exercise as part of your health and longevity strategy, then check out this study, which suggests that aging of the immune system can be slowed by exercise.

The problem with our modern lives is that we are, in general, much more sedentary than our ancient ancestors, who hunted and engaged in intense physical activity in order to survive. They often covered great distances in their hunt for food, and their world was one of constant movement and activity. In contrast, we spend more time behind a desk or sitting on the sofa than we do hunting bison on the Great Plains.

To make matters worse, as we age, we become even less physically active, which is seriously bad news for the body and contributes to muscle loss, bone thinning, and even decline of the immune system.

Introduction

What confounds human studies of immunosenescence is that physical activity is not taken into account in either cross-sectional or longitudinal studies of immune aging. The majority of older adults are largely sedentary and fail to meet the recommended guidelines for physical activity of 150 min of aerobic exercise per week. Regular physical activity in older adults has been associated with lower levels of pro-inflammatory cytokines such as IL-6, TNFα, improved neutrophil chemotaxis and NK cell cytotoxicity, increased T-cell proliferation and improved vaccination responses. Thus, the current literature on immunosenescence is not able to determine which aspects of age-related immune change are driven by extrinsic factors and which may be the consequence of a constitutive aging programme.

Here, we studied several aspects of the adaptive immune system in highly physically active older individuals (master cyclists) in which we have shown the maintenance of a range of physiological functions previously reported to decline with age. We show that compared with more sedentary older adults, the cyclists show reduced evidence of a decline in thymic output, inflammaging and increased Th17 cell responses, although accumulation of senescent T cells still occurred. We reveal high serum levels of IL-7 and IL-15 and low IL-6, which would together provide a environment protective of the thymus and also help to maintain naïve T cells in the periphery. We conclude that maintained physical activity into middle and old age protects against many aspects of immune aging which are in large part lifestyle driven.

The decline of the immune system

As we age, the thymus, the organ that produces the majority of T cells, starts to shrink in a process known as involution. During this process, the T cell-producing tissue changes to fat and the production rate of T cells steadily falls.

The first major drop in thymic output occurs towards the end of childhood; prior to this, we produce T cells at a furious rate, which may also somewhat explain why children are so resilient and can heal injuries faster.

Ultimately, the loss of thymic tissue and the decline of T cell production leads to the failure of the immune system, leaving us wide open to infections and microbial invasion. The immune system is also responsible for clearing senescent cells, and, as it declines, more and more of these problem cells build up, leading to chronic inflammation and increasingly poor tissue repair.

Exercise keeps the thymus young

The new study by Janet Lord, Professor of Immune Cell Biology at the University of Birmingham in the UK, looked at 125 male and female cyclists between 55 to 79 years old who had bicycled heavily during their adult lives. They found that these people did not suffer from the typical loss of muscle mass (sarcopenia) seen during aging, nor did their bones become significantly thinner as is often observed in normal aging.

The research also showed that the age-related decline of T cell production in the thymus was negligible in older people who have maintained high physical activity throughout their lives compared to people who did not exercise regularly. The study results showed that active older people have a similar level of T cell production as people in their 20s.

The cyclists had high levels of the hormone interleukin 7 present in their blood, which helps to slow down the shrinking of the thymus. The hormone is produced by various cells in the body, including muscle cells; the researchers believe that the more active the muscles are, the more hormone is produced, which keeps the thymus functionally younger.

Conclusion

While the results are significant and are yet another reason to exercise, it would be interesting to see the outcome if the thymus could be restored to the production level that we all enjoy as children. Certainly, there are researchers working on rejuvenating the thymus, and the initial results have been positive.

Until that therapy arrives, the best we can do right now is to maintain physical activity in order to try to slow down aging of the immune system as much as possible.

Literature

[1] Duggal NA, Pollock RD, Lazarus NR, Harridge S, Lord JM. Major features of immunosenescence, including reduced thymic output, are ameliorated by high levels of physical activity in adulthood. Aging Cell. 2018;e12750. https://doi.org/10.1111/acel.12750

Undoing Aging With Michael Greve

As our readers probably already know, from March 15 to March 17 this year, the Undoing Aging 2018 Conference will be held at the Umspannwerk Alexanderplatz in Berlin, Germany. The event is intended to bring together scientists working on repair-based therapies for aging as well as to give life sciences students—and anyone else who may be interested, really—an occasion to deepen their understanding of the current state of rejuvenation research.

Organised by the Forever Healthy Foundation and the SENS Research Foundation, the conference will feature eminent researchers among its many speakers, such as the director of the Wake Forest Institute for Regenerative Medicine, Dr. Anthony Atala; Dr. Kristen Fortney, who is an expert on computational drug discovery and aging biomarkers; Dr. Michael West, co-CEO of BioTime and founder of Geron Corporation; Dr. James Kirkland, a world-class expert on cellular senescence; and Dr. Vera Gorbunova, a pioneer of the comparative biology approach to the study of aging and co-director of the Rochester Aging Research Center. In addition to its scientific, educational, and networking value, UA2018 will no doubt greatly contribute to the popularisation of this area of research and help spread awareness, both about the problem represented by age-related diseases and the great opportunity we have to finally bring aging under comprehensive medical control within a relatively short time frame.

LEAF, naturally, will attend the event to keep you fully up to date, and our readers can expect extensive coverage during and following the event. Meanwhile, to whet your appetite, we caught up with Forever Healthy’s founder and CEO, Michael Greve, to learn a bit more about his foundation and the story of his involvement in life extension.

Michael and Forever Healthy

Michael’s success as an entrepreneur dates all the way back to the early days of the Internet. In 1995, he and his brother Matthias founded web.de, which grew into one of the largest and most popular Internet portals in Germany. Among the several other ventures started by Michael and his brother are the flight booking website flug.de and the last-minute travel site lastminute.de.

As Michael himself said during his talk at RB2016, which was organised by SRF and hosted by the Buck Institute for Research on Aging, his lifestyle during his hacker days wasn’t among the healthiest; his interest in healthy life extension developed as a consequence of his efforts to switch to a healthier way of living. Eventually, his research into the science of staying healthy led him to the work of Dr. de Grey and the realisation that staving off age-related diseases and preserving health indefinitely was a potentially achievable goal.

Following this serendipitous discovery, he founded and launched the Forever Healthy Foundation, whose goal is to speed up the creation of a rejuvenation biotechnology industry so that aging and the ailments that come with it may soon become relics of the past. The FH Foundation website is an open-source knowledge base meant to provide free access to information with which people can develop personal longevity strategies. However, even the healthiest of lifestyles will not prevent the diseases of aging from manifesting sooner or later; to do so, it will be necessary to repair the damage the body causes to itself as a side effect of its normal operation—in other words, to make use of rejuvenation biotechnologies.

To make sure these technologies will be available sooner rather than later, Michael’s Kizoo Ventures provides mentoring, seed, and early-stage financing for startups that focus on rejuvenation biotech. Up to now, Kizoo has funded Oisin Biotechnologies, Ichor Therapeutics’ LysoCLEAR, and AgeX Therapeutics, among others. Furthermore, in 2016, the FH Foundation committed 5 million dollars specifically to SENS research, while seed investments for at least 5 more million were committed by Kizoo for startups eventually spinning off that very research.

The interview

We thought it’d be interesting to get to know Michael a bit better and learn about his journey into life extension, his expectations for UA2018 and the nascent rejuvenation biotechnology industry in general. Here’s what we talked about.

So, Michael, can you tell us a bit more about your history as an entrepreneur?

As an entrepreneur, it’s been an incredible journey for me. The flourishing of the PC, the internet, smartphones, the cloud, the post-PC era. I am grateful to have been born at this time. Having been able to experience this development first-hand, to co-found and grow several major internet companies in Germany, to go public and today finance and mentor some of our country’s most exciting startups, is something I am thankful for every day.

Now, the same dramatic evolution we saw in information technology is happening in genetics, biology, and nanotechnology. No matter how spectacular our technological development has been so far, I am even more excited about what lies ahead of us.

Did any particular event trigger your decision to switch from your old, unhealthy lifestyle to a better one, or did it just happen, so to speak?

Nothing in particular, just the realization one day that it would be stupid to carry on like this.

Did you just “stumble” upon rejuvenation in your search for healthier ways of living, or did you independently realise that aging is bad for you and decided to see if others had come to the same conclusion?

When you think about how to stay healthy for as long as possible, you naturally conclude that aging itself is your biggest enemy and start asking yourself what to do about it.

Aside from the obvious—healthy eating, exercising, and avoiding bad habits—what else is included in your personal longevity strategy?

On one hand, there are the other significant aspects of primary prevention, such as a proper circadian rhythm and limiting blue light exposure, stress management and meditation, getting rid of toxins and heavy metals, high-end supplementation (both oral and IV), intermittent fasting and a cyclic fast mimicking diet. Additionally, I am continuously applying the latest findings in functional medicine and genetics to monitor and counter my low-level biochemical imbalances and potential risk factors for age-related diseases.

The other two pillars of my personal longevity strategy are regularly using the best possible early detection and applying the most promising, albeit still limited, rejuvenation therapies and geroprotectors available today, such as hormone replacement, de-calcification, metformin, deprenyl, berberine and mitochondrial target Q10. For the near future, I am closely following the latest developments and ongoing trials in rapamycin, NAD+, and young plasma exosomes.

For those interested, we have documented this holistic approach on our forever-healthy.org website, freely available to everyone, and are continuously updating and expanding it. We are in the process of hiring a team of skilled medical professionals to accelerate work on this important project. Interested candidates can directly apply through our website.

During your talk at RB2016, you spoke about your own advocacy efforts. UA2018 is a glaring example of such efforts, but can you tell us about other ways you try to spread awareness and how (if at all) you think the public’s perception of the subject has changed over the years?

We do physical meetups now and then in Berlin and are hosting an active community on Facebook, encouraging people to exchange their personal approach to healthy longevity.

In general, public opinion has already changed significantly over the past two or three years. Nowadays, you read much more often and positive on extending the healthy human lifespan.

I firmly believe that once the first working rejuvenation therapy is out there, the whole discussion will immediately change. It will turn from abstract arguments about over-population and such to a very personal one. Do I want to live twenty more years in good health or not? At that point, I guess nobody will say, “Well no, I won’t use that treatment and rather get cancer because of, you know, overpopulation.”

So, the best thing we can all work on is to make this very first therapy happen and then really promote it.

Many people in our community are hoping to see more wealthy people engaged because they have more resources at their disposal and could have a greater impact by donating even a small share of their wealth. However, we don’t see that happening much. What messages might be more convincing to these wealthy people? Are they any different from what we usually say when we are trying to convince someone?

Large-scale philanthropy in a very early market such as rejuvenation biotech is hard and only for a few very forward-thinking individuals. I think the most straightforward and effective message to rich people, in general, is to show them a way to become even richer.

I see the acceleration of the development of actual rejuvenation therapies as a three-stage process. First, motivate scientists to enter the field and work on the underlying science, then spin out promising research results as early as possible into fundable startups and finally bring in private capital to fuel development of the actual therapies. This last step will allow those high net-worth individuals to both put their money to good use and benefit from it at the same time.

That is why we are organizing the Undoing Aging conference, funding basic research and working hard to move promising research into fundable startups, allowing private capital to fuel the journey from there on. In terms of startups, we have done this already a few times and are seeing a lot of positive effects there.

What do you expect out of UA2018? What do you expect it to impact the most? Public awareness, investors’ interest, or networking among scientists?

First and foremost, we are focussed on the science itself. We want to provide a platform for the existing scientific community that already works on damage repair and strengthens the community itself. At the same time, Undoing Aging offers interested scientists and students a first-hand understanding of the current state of affairs to attract new scientists to our exciting field.

Apart from that, we have invited the broader longevity community to enable extended networking and support all advocates that do public work. Since we have a lot of interest from journalists, bloggers and several TV stations, there is going to be a public aspect as well.

So, yes, you could say it’s networking on all levels to advance our cause.

Are there any plans to make Undoing Aging into an annual event?

Yes, we are in this for the long run. This year, we have already received so much positive feedback and even more registrations than we expected. That is very encouraging.

Tax-funded rejuvenation research could do a lot to speed up the arrival of effective anti-aging therapies to the clinic; the German Party for Health, in which you serve as a strategic advisor, was created exactly to achieve this goal. Do you think it may be possible to get governments involved in early-stage research, or will their interest only spark once feasibility is proven—for example, through robust mouse rejuvenation or even early human trials?

Governments only move if a substantial number of their people demand it, and a sufficient number of people will only realize the potential once the first human rejuvenation therapies are available. I don’t think a mouse will do the trick. Once we are nearing this threshold, organizations like the Party for Health will provide an ideal platform to channel that energy.

Again at RB2016, you talked about the need for this industry to be self-accelerating, just like the internet industry. The latter, though, owes much of its success to the fact that new companies could easily build on existing products and technologies that became cheap and easily accessible fairly soon or were freely available and open source. Do you think there is a way to speed up things in biotech in a similar way? What are the game changers, in your opinion?

There are two fundamental differences here.

First, as you said, we could easily build on what was before. We had the HTTP protocol, a web server, a browser, Linux and freely available databases. You could create virtually any service on top of that platform. Rejuvenation biotech is different. Here, you need one scientific discovery per startup. So this is much harder.

On the other hand, the future rejuvenation biotech market is probably at least two orders of magnitude bigger than the internet industry. Just compare the personal value of, let’s say, an iPhone and the valuation of the company that builds it to the personal value of staying free of cancer and all the other age-related diseases for your whole life and even extending your healthy lifespan by decades. That gives you an idea of what the valuation of such a company could be. In the case of rejuvenation therapies, it’s not going to be a single company or service. Due to the nature of aging, there will be many different therapies and many different companies. So there is a huge incentive to invest in that industry.

Speaking of accelerating progress, how do you see the impact of AI, particularly machine learning, in research in the coming years? Do you believe that it will help speed things up?

AI will be an essential tool in the future of medicine and can also be very helpful in science.

Many people are concerned about affordability. Do you imagine that governments will necessarily have to step in and subsidise rejuvenation therapies that are otherwise difficult to afford?

There is no need to worry about that. We are talking about a market with billions of customers, numerous possible approaches to each aspect of aging, such as clearance of senescent cells. And you can’t patent an approach in general, e.g. clearing senescent cells, just the particular implementation. In such a market, the fundamental economic forces as in any other industry will apply, and healthy competition and a multitude of products in combination with a massive customer base will force quality up and prices down as products quickly mature and become a general commodity.

You are currently supporting several biotech startups that are taking rejuvenation treatments into clinical trials. Is there an estimate of the baseline cost of these therapies, and do you know what the companies are planning to do to make them more affordable?

At the end of the day, these therapies are going to be an extremely affordable commodity.

As an investor, what actions would you recommend other investors to take to help kick-start the rejuvenation industry and make sure that a positive feedback loop will allow it to grow exponentially as the Internet industry did? What traps are there to avoid, and how do we avoid them?

Well, the potential rewards are immense, but so are the potential risks. So you have to be prepared to either write off most of your investments if you invest at an early stage or pay an enormous premium if you invest at later stages.

Finally, something of a personal question. You certainly know about longevity escape velocity—a situation in which life expectancy grows faster than time is passing. How optimistic are you that we may reach it within your lifetime, or ever?

Of course, we don’t know for sure when or at what probability, but I think it is much more motivating, fun and exciting to work under the assumption that we can make it and will also provide the best chances that we do make it. If we don’t make it to LEV, at least we will enjoy an extremely long and healthy life.

Do you have any parting, take-home message for our readers that you would like to share?

I think we are living in the most extraordinary time in human history; let’s make the best of it.

Waking up From the Dream of Longevity

In the course of the last century, science fiction has been a harbinger of things to come. From the automatic sliding doors of Star Trek to visual communication, cyberspace, and even the moon landing, many of our present technological achievements were dreamed up in the futuristic visions of science fiction authors of the 1960s and 70s. Indeed, the fantastical world of science fiction, while not intended to be prophetic, has ended up acting as a blueprint for our modern world.

We have learned from science fiction not only the possibilities of technology, however, but also its irreconcilable dangers. Readers of the genre will recognize the many stories warning us of the hazards of space travel, mind enhancement, and artificial intelligence. These fictional accounts cautioned that if we were not careful, our freedom to transform the world around us would transmogrify into a self-enforced slavery.

Nonetheless, while many of us remembered that these were just stories, intended as speculations about a possible future—in other words, they were fiction before science—through them, we became used to the idea that any advanced technology was inherently dangerous and its use always suspect. Moreover, it became a commonplace idea that technologies whose aim was to change or transform the human being—whether genetic, biological or reconstructive—would lead to a future worthy of Mary Shelley’s Frankenstein.

Paradoxically, science fiction became the torchbearer of the dystopian consequences of unhindered technological progress and showed us a world in which, instead of an optimistic balance between progress and responsibility, an excessive use of technology would lead to our replacement by a host of loving, graceful machines.

Furthermore, the extension of life through scientific means was, until the last few decades, another mainstay motif of science fiction stories and was portrayed as a pretty perilous idea. In many of these stories, the desire for longevity or immortality was often presented as a false goal or as part of a cautionary tale against the narcissistic wish to meddle with nature. In some cases, such as Borges’ “The Immortal”, the struldbrugs in “Gulliver’s Travels” or Moorcock’s “Dancers at the End of Time”, a longer life brought with it the loss of motivation and meaning, as boredom and stagnation became the bulwarks of an ageless society.

In others, overpopulation was to be the deciding factor in the undesirability of longevity, as in Richard Wilson’s “The Eight Billion”, in which this number is described as the population of New York alone following the discovery of a means to extend human life indefinitely. Others still, such as Roger Zelazny’s “The Immortal” and Richard Morgan’s “Altered Carbon”, worried that rejuvenation, if it ever came about, would only be available to the rich, further segregating society into those who could afford to live free of the ravages of aging and those who could not.

Without a doubt, these warnings raise important concerns regarding social inequality and resource management in a world where humans can greatly exceed their expected lifespan. Curiously, similar arguments about an untenable population explosion, a loss of meaning, boredom, and inequality are also the primary objections put forth by those who oppose the scientific pursuit of longevity today. Nevertheless, as important as these are to consider, they might be more suitable for the above-mentioned fictional accounts than to the modest scientific work presently underway.

Certainly, the interest in life extension has taken an enormous leap forward in the last two decades, both in the efforts carried out by scientists across the globe to understand and mitigate the causes of aging itself, and in the explosion of stories and debates on the subject, particularly in the news, public media, podcasts, and television shows.

Today’s search for a longer life is very different to that described by the science fiction of the last century, however. Instead of a common societal effort to cheat death, or a heroic quest to find the fountain of youth, current scientific attempts to treat aging are based on the much more long-term and human-scale work of understanding what aging is to begin with, how it occurs in living organisms, and whether it is possible to prevent or reduce the damages associated with it. To the dismay of some, the focus of aging research is much less grandiose than our former stories might have anticipated, and the spotlight is not on a desire to live forever but on a humanitarian effort to reduce suffering by eradicating age-related diseases.

Nevertheless, the exponential rise in the number of news stories written about longevity indicates that the science fiction of the 20th century has become the science fact of the 21st. In the last few years, we have seen articles on the science of longevity published in every major newspaper, including the New York Times, the Guardian, the Globe and Mail, and Le Monde, to name but a few.

This has been complemented by a parallel upsurge in newscasts and interviews with leading researchers as well as attracting the interest of major investors, including the likes of Google, Larry Ellison, and Jim Mellon along with Silicon Valley startups such as Unity Biotechnology. A simple Google search for news containing stories about human longevity shows the stark difference in interest between the year 2000 (0 results!), and 2018, where more than 800 news stories have already been released, and that is only in the last two months!

The biology of aging has emerged as a real science with the potential to change the way we see health and lifespan in the coming years. The distant dreams of science fiction of the last half-century have become a present reality in which the rapid advances of science and technology offer us, for the first time in human history, the real possibility to undo the damages caused by aging.

Once again, however, we should tread carefully when equating the fictional speculations of our storytellers with that of the scientific pursuit of understanding the mechanisms of aging. It is high time we begin putting the science before the fiction. The day has come to wake up from the dreams of the past and take an active role in building a present in which a life free of aging and unnecessary suffering is not only possible but is pursued as a solution to a real problem that, today, concerns each one of us.

Gene Cocktail Helps Hearts to Regenerate

The human heart is an organ whose cells rarely divide, making tissue repair and regeneration a huge problem following a heart attack. Many animals, such as zebrafish and salamanders, are different; they can regenerate damaged hearts easily.

As humans, we also once had the same regenerative capacity during our early development, but after we were born, we lost this ability. This is also true for many other organs, including the brain, spinal cord, and pancreas. The cells in these tissues divide very rarely if at all, and this is a big problem. But, what if we could get that regenerative ability back and repair damage to our hearts the way these amazing animals do?

Researchers have been trying for decades to find out how we can enjoy the same tissue regeneration, but they have met with limited success—until now.

Unlocking cell division in cardiomyocytes

A research team led by Dr. Deepak Srivastava, president of the Gladstone Institutes, has finally achieved this long sought-after goal in a study published in the journal Cell[1]. The researchers have developed an efficient and reliable way of making non-dividing adult cardiomyocytes divide so that they can repair damaged hearts.

They identified four genes that regulate cell division in adult cardiomyocytes. When all four of them are combined together, they cause the cardiomyocytes to re-enter the cell cycle and start dividing quickly. They also demonstrated that following heart failure, these combined genes improve cardiac function significantly.

The researchers tested the technique in animal models using cardiomyocytes derived from human stem cells. They stained newly divided cells with a special dye in order to track them; they found that between 15 to 20 percent of the cells divided and remained alive thanks to the four-gene combo. This is a vast improvement on previous studies, which have only managed around 1 percent cell division in adult cardiomyocytes.

The team also made the technique simpler by identifying drugs that could replace two of the four genes involved in the combination. This still produced the same result as using all four genes and is significantly easier, logistically speaking.

Could be used in multiple tissues

As mentioned, the heart is not the only tissue that has cells that either do not divide or do so very slowly. The researchers believe that their technique could also potentially be applied to encourage other tissues and organs to regenerate. This is because the four genes are not unique to the heart and are found in other cells around the body.

If science can unlock the same regeneration in nerve cells, pancreatic cells, and retinal cells, this could be the basis of therapies for heart failure, brain damage, diabetes, blindness, and many other conditions. The good news is these four genes encourage cell division the same way in mice, rats, and human cells.

Conclusion

Manipulating non-dividing cells and returning them to the cell cycle to boost regeneration in organs and tissues holds great potential. Scientists have been working for decades to achieve this in the heart, and now it has been achieved. The next big step is to translate this approach to humans, and we wish them the very best in their future research.

Literature

[1] Mohamed, T. M., Ang, Y. S., Radzinsky, E., Zhou, P., Huang, Y., Elfenbein, A., … & Srivastava, D. (2017). Regulation of Cell Cycle to Stimulate Adult Cardiomyocyte Proliferation and Cardiac Regeneration.

Potential New Aging Biomarker in Urine

A potential new biomarker of aging has been discovered by researchers. This substance, found in urine, indicates oxidative damage that could be used to determine how much someone has aged biologically.

Why do we need biomarkers of ageing?

It is important for us to develop accurate and reliable biomarkers of aging, as these can show us how much we have aged biologically rather than chronologically. If we know how we are aging on a biological level, it can help to inform our healthcare strategy.

For example, it might help to predict our risk of developing certain age-related diseases as well as our likely life expectancy. Having this information could allow us to address problems sooner and potentially improve our health and lifespan by making lifestyle changes or starting treatment earlier.

There is an urgent need to develop accurate and cost-effective aging biomarkers in order to determine the efficacy of nascent therapies that target the aging processes; without suitable biomarkers, it will be difficult to prove that something has worked in order to get it approved for public use.

Ideally, a number of reliable biomarkers would be used to create a panel that can accurately assess the efficacy of a treatment. This makes it a must to identify cost-effective and practical aging biomarkers.

Oxidative damage markers

The new study has identified a new potential biomarker that is linked to oxidative damage and could be cost-effectively measured via urine samples[1].

One of the ways in which we age and our cells become damaged is through the action of free radicals. These oxygen byproducts are produced within the cell during normal metabolism. In particular, the mitochondria, the power plants of our cells, create these free radicals as they produce energy.

These free radicals then bounce around the inside of our cells, striking the cellular components and potentially damaging them. A strike to DNA, RNA or mtDNA, for example, can cause damage that leads to cell dysfunction. As we age, our levels of free radicals rise, and so we experience more oxidative damage. This damage then leaves oxidative damage markers, and this is the basis of the research here.

The researchers have identified 8-oxo-7,8-dihydroguanosine as a biomarker that results from oxidation of RNA. In a previous mouse study, the researchers found that 8-oxo-7,8-dihydroguanosine increases in urine with age. So, quite simply, as more oxidative damage is experienced, more 8-oxo-7,8-dihydroguanosine is expressed in urine.

It works in humans too

To test if this also applied to humans, the research team measured 8-oxo-7,8-dihydroguanosine in human urine samples from 1,228 people aged 2 to 90 years old. To do this, they used a very fast testing technique called ultra-high-performance liquid chromatography. Sure enough, they discovered an age-dependent increase of urinary 8-oxo-7,8-dihydroguanosine in people aged 21 years old and over.

The team also noted that the levels of 8-oxo-7,8-dihydroguanosine were similar between men and women, the exception being post-menopausal women, who had a higher level of the biomarker. The researchers believe that this may be due to the decrease in estrogen during menopause, as estrogen is an antioxidant.

Conclusion

8-oxo-7,8-dihydroguanosine could be an effective biomarker of aging, as it is a potentially cost-effective and fast way to determine the biological age of a person. This sort of biomarker is an invaluable tool in anti-aging research.

Literature

[1] Gan, W., Liu, X. L., Yu, T., Zou, Y. G., Li, T. T., Wang, S., … & Cai, J. P. (2018). Urinary 8-oxo-7, 8-dihydroguanosine as a potential biomarker of aging. Frontiers in Aging Neuroscience, 10, 34.

Researchers Discover How to Supercharge Stem Cells

Researchers at the School of Molecular Sciences at Arizona State University have discovered a potential way to supercharge our stem cells and reverse some aspects of cellular aging.

The Hayflick limit

Normal cells cannot divide indefinitely; they have a built-in replicative limit, which is often called the Hayflick limit after its discoverer, Leonard Hayflick. This Hayflick limit means that regular human cells are unable to replicate forever; once they reach their replicative limit, they cease to divide and enter senescence, a nondividing state in which the cell destroys itself.

The Hayflick limit is directly related to the length of DNA repeats found on the ends of the chromosomes. These repeats form protective cap-like structures called telomeres, which protect the chromosomes from DNA mutations that can cause the genome to become unstable.

Every time a cell divides and makes a copy of itself, the telomeres shrink in size until they become so short that they cannot protect the chromosome ends. This continual telomere attrition is thought to be one of the reasons we age and acts like a “molecular clock” that counts down the replicative limit of cells. The loss of replicative potential in our cells is linked to the aging process, with reduced cell populations directly leading to the loss of tissue and organ function observed during aging.

A molecular fountain of youth

The enzyme telomerase helps to counteract telomere attrition by adding more DNA repeats to the caps, effectively rewinding the molecular clock to increase the lifespan of a cell and its potential to replicate. Some cells do produce telomerase, but most of our cells do not.

Our regular somatic cells do not produce telomerase, but this is not a problem because we want them to reach their replicative limit and destroy themselves via apoptosis, a programmed cell death process, once they reach their Hayflick limit. This is because aged cells may have picked up mutations during their lives, so keeping aged and potentially damaged cells alive and replicating is an invitation for cancer to develop.

The problem is that this steady loss of telomeres also affects our stem cells; these master cells can become various other types of cells, and they supply tissues with the cells they need to remain healthy. Stem cells combat telomere loss by producing telomerase, but this only serves to slow down the molecular clock and does not immortalize these cells. Stem cells are also better at repairing themselves than somatic cells.

Once stem cells start getting critically short telomeres, they also stop dividing and cannot replenish our organs and tissues. This causes another aging process, stem cell depletion, and leads to organ failure, poor tissue healing, and loss of tissue function.

Supercharging our stem cells

Understanding the underlying mechanisms of telomerase and replicative limits holds the potential to reverse telomere attrition and thus an important part of cellular aging. This has implications for preventing or reversing age-related diseases and potentially allowing us to live longer in good health.

The new study has discovered a critical step in the telomerase enzyme catalytic cycle; this cycle determines the ability of the telomerase enzyme to create extra DNA repeats on chromosome ends and thus maintain the telomeres[1].

The researchers show that telomerase has a kind of “braking system” that ensures the proper synthesis of DNA repeats. However, this brake also limits the overall activity of the telomerase enzyme, and finding a way to release this brake safely holds the potential to effectively restore lost telomere length in stem cells, partially reversing cellular aging and allowing tissue regeneration and the supply of fresh cells to continue.

The researchers demonstrate that this braking system relates to a pause signal that is encoded in the RNA template of telomerase. This means that once it has created a ‘GGTTAG’ repeat sequence, it pauses; when the next sequence is started and DNA synthesis begins again, this pause signal remains active and limits DNA synthesis.

This discovery also explains why a single specific nucleotide stimulates telomerase activity, solving a mystery that has eluded scientists for decades. In effect, this means that by specifically targeting the pause signal and turning it off, we remove its ability to interfere with repeat DNA synthesis. In effect, we could use this discovery to effectively supercharge telomerase, making it more efficient at replacing lost DNA repeats at a faster rate and thus keep pace with loss to a higher degree. This has the potential to rejuvenate our aging stem cells and keep our organs and tissues supplied with vital replacement cells.

It also has implications for treating various diseases that are linked to impaired telomerase activity, such as dyskeratosis congenita, aplastic anemia, and idiopathic pulmonary fibrosis.

Walk the line

While a therapy that targets this pause mechanism could partially reverse cellular aging and thereby prevent some age-related diseases, it would need to be carefully balanced. Too much of a good thing can be harmful, so a therapy would need to be carefully calibrated to maintain efficient cell regeneration without allowing unchecked cell proliferation. Essentially, we would be walking the line between highly efficient cell rejuvenation and tissue regeneration, and increased cancer risk.

The key is targeting the right cells. Somatic cells make up the majority of the cells in our bodies, and as mentioned previously, they do not produce telomerase, meaning that as they divide, they reach their Hayflick limit far sooner. This lack of telomerase activity in somatic cells is a mechanism that reduces the risk of cancer. Telomerase production is what most cancers use to fuel their rampant, uncontrolled growth, so it is a good thing that the ability to produce telomerase is turned off in our somatic cells.

The risk is that drugs that non-selectively increase telomerase activity in both stem cells and somatic cells are potentially dangerous. The researchers’ goal is to enhance telomerase activity and the production of DNA repeats selectively in stem cells while avoiding doing so in somatic cells.

The next step is to screen or design small-molecule drugs that can specifically target stem cells, turning off this pause mechanic as a path to therapies that address age-related diseases and help to restore youthful tissue and organ function to aged people.

Conclusion

Hopefully, we can find a way to walk the line between cancer and enhanced tissue regeneration; after all, a number of species already do, as do we during early development. The usual caveats apply here, this is only initial in vitro data and an in vivo study will need to follow to see if it is effective. Should this pan out then it has the potential to treat various age-related diseases, and that will be very welcome news indeed!

Literature

[1] Chen, Y., J.D. Podlevsky, D. Logeswaran and J.J.-L. Chen (2018). A single nucleotide incorporation step limits human telomerase repeat addition activity. EMBO. J. 37: e97953, DOI 10.15252/emboj.201797953.

Caloric Restriction Improves Regeneration in Intestines

Caloric restriction has long been known to increase the lifespan and healthspan of most studied animals. Research also shows that animals given a calorie-restricted diet are also generally more able to regenerate tissue damage following injury.

Caloric restriction improves tissue regeneration

A new study by the Lengner lab at the University of Pennsylvania has identified the actual cells responsible for this increased regenerative capacity in intestinal tissue[1]. The researchers found that when a mouse given a calorie-restricted diet is exposed to radiation, a specialized type of stem cell known as a reserve stem cell is able to survive and rapidly repair intestinal tissues.

Numerous studies have shown that caloric restriction, while unpleasant, can improve healthspan and reduce the risk of diabetes, heart attack, and some other age-related diseases. Studies also show that caloric restriction allows animals to regenerate injured tissues more efficiently.

However, the effects of caloric restriction are really beyond debate, given the amount of supporting data. What was not clear was the molecular and cellular basis for the observed health benefits.

It had been proposed that caloric restriction works and increases tissue repair by influencing the activity of stem cells. These are tissue-resident stem cells that change into the various cell types of their native tissues. The research team had previously explored how some stem cells in the intestines resist DNA damage and the reasons that caloric restriction might be influencing these stem cells to resist damage.

They had reviewed recent studies that looked at the effects of caloric restriction on the active intestinal stem cells commonly found in this tissue. These active stem cells are the workhorses of the tissue, creating the high turnover of cells needed in this environment, but they are also easily damaged by radiation exposure. The researchers, therefore, felt it was unlikely to be the intestinal stem cells that were responsible for the increased regeneration that caloric restriction provokes.

Reserve stem cells to the rescue

Their attention moved to another type of stem cell found in the intestinal tissue, the reserve stem cell. In a previous study, the team had demonstrated that these particular stem cells are generally in a dormant state and remain well protected from radiation and similar insults, such as chemotherapy. They found that these dormant stem cells become activated when serious injury kills the active stem cells in the tissue; once this happens, the reserve stem cells go into high gear and start to repair the tissue. So, the researchers proposed that these cells were responsible for the regenerative effects of caloric restriction.

In order to test this, the team looked at how these specialized intestinal stem cells responded to caloric restriction in mice and when exposed to insult from radiation.

The mice were given a diet that was 40 percent lower in calories than a regular diet; the researchers saw that the reserve stem cells expanded by a five-fold ratio after becoming increasingly active. Additionally, the team found that selectively removing these cells from mice cut their regenerative capacity in half in the intestinal tissue. This suggests that reserve stem cells play a key role in tissue repair and regeneration and that caloric restriction boosts their activity.

Next, the researchers honed in on the exact mechanisms through which these cells were acting, and to do so, they compared the gene expression of normal mice versus calorie-restricted mice. They found that the reserve stem cells suppressed various pathways known to be regulated by the nutrient-sensing complex mTOR (mammalian target of rapamycin).

The mTOR pathway is one of the four pathways that control metabolism and is known to influence aging; this is part of deregulated nutrient sensing, a hallmark of aging. Other studies show that activating mTOR can mobilize dormant stem cells, which is needed in order for tissue to be regenerated, as it serves as a wake-up call.

The researchers here discovered that reserve stem cells had low mTOR activity, which became even lower during caloric restriction. Also, lower mTOR activity correlates with better resistance to injury. However, if the tissue needs to regenerate after an injury, the reserve stem cells would need mTOR. Strangely, they found that when injured, the calorie-restricted mice could activate mTOR better than the control mice.

This suggests that even though mTOR is initially suppressed by the reserve stem cells, it is also more readily activated in calorie-restricted mice following injury. Why this happens is not yet known, but the researchers intend to find out in a follow-up study.

Finally, the research team tested leucine, an amino acid that activates mTOR, and rapamycin, a drug known to inhibit mTOR activity. They wanted to find out if mTOR regulated the activity of reserve stem cells and found that stem cells proliferate when exposed to leucine and were inhibited when exposed to rapamycin.

The researchers found that on one hand, leucine made reserve stem cells more vulnerable to radiation and less able to regenerate tissue damage following radiation injury. On the other hand, they found that rapamycin protected the reserve stem cells from radiation by keeping them dormant.

The mTOR pathway and its seemingly paradoxical role here poses an intriguing puzzle and as their next step, the researchers plan to look beyond nutrient sensing to see what type of signalling molecules can encourage the activation of reserve stem cells. It seems that keeping mTOR levels lower supports longevity, but that there is a fine balance between keeping it low but allowing it to be expressed when required during injury.

A word of caution

It should be pointed out that this experiment was in mice, but the health benefits do appear to translate to humans, as various studies show. Unfortunately, while mice do live considerably longer when on caloric restriction, this increase in lifespan is not seen in humans.

Broadly, caloric restriction is beneficial to humans, so it is still worth considering, and other studies suggest that this improved regeneration is also seen in other tissues. There are also some people who might think that rapamycin may be a way to have your cake and eat it.

However, we should be cautious here. Rapamycin is not a suitable replacement for caloric restriction, as its effects are long-lasting and would continue to prevent stem cell activation following injury; this would lead to poor tissue regeneration, as reserve stem cells would not be mobilized effectively. While rapamycin and caloric restriction do share some common targets, they are not the same.

Like rapamycin, caloric restriction does inhibit mTOR but, as this experiment shows, can be easily reversed as a response to injury. This is not the case with rapamycin, which remains in the system and continues to inhibit mTOR regardless of injury and thus reduces the regeneration of tissue.

Conclusion

Sorry, folks; for the time being, there is no pill to mimic the effects of caloric restriction, so if you want the health benefits, cutting your calories is currently the only way to go.

Literature

[1] Yousefi M, Langner C (2018). Calorie Restriction Governs Intestinal Epithelial Regeneration through Cell-Autonomous Regulation of mTORC1 in Reserve Stem Cells.Stem cell reports 10.1016/j.stemcr.2018.01.026

FDA RMAT Framework is Win-Win for Gene Therapies

Back in November 2017, the FDA announced a comprehensive policy framework for the development and oversight of regenerative medicine products, including novel cellular therapies. Both draft guidance documents had 90-day comment periods, and we at LEAF joined forces with the Niskanen Center to submit comments to the FDA to ensure that the voice of the community for healthy life extension was heard. These new regulations could have considerable implications for the therapies and technologies being developed as part of the biomedical gerontology field.

The first draft guidance addresses how the FDA intends to optimize its regulatory requirements for devices used in the recovery, isolation, and delivery of RMATs (regenerative medicine advanced therapies), including combination products.

The second document explains what expedited programs may be available to sponsors of regenerative medicine therapies and describes what therapies may be eligible for RMAT designation.

According to new FDA regulations, a drug is eligible for designation as an RMAT if:

  • The drug is a regenerative medicine therapy, which is defined as a cell therapy, therapeutic tissue engineering product, human cell and tissue product, or any combination product using such therapies or products, except for those regulated solely under Section 361 of the Public Health Service Act and part 1271 of Title 21, Code of Federal Regulations;
  • The drug is intended to treat, modify, reverse, or cure a serious or life-threatening disease or condition; and
  • Preliminary clinical evidence indicates that the drug has the potential to address unmet medical needs for such disease or condition

We hope that this joint project will support the improvement of US regulations that concern these innovative treatments and will make the overall regulatory landscape more friendly. Below, we cite the most important notes from our resulting paper.

Last week, the Niskanen Center joined with the Lifespan Extension Advocacy Foundation in filing comments to the Food and Drug Administration (FDA), offering our support for the agency’s new regenerative medicine advanced therapy (RMAT) designation draft guidance for industry. Although there are opportunities for marginal improvements to the guidance, and FDA approval processes more generally, we are happy to see that the agency chose to include gene therapies in its interpretation of what qualifies as a regenerative medicine therapy. Under section 3033 of the 21st Century Cures Act, the FDA was tasked with developing an accelerated approval process for regenerative advanced therapies. Such therapies would qualify for expedited review and approval so long as the drug (a) met the definition of a regenerative medicine therapy, (b) was “intended to treat, modify, reverse, or cure a serious condition,” and (c) “has the potential to address unmet medical needs” for a serious disease or condition. Unfortunately, the bill’s definition of a regenerative medicine advanced therapy was unclear on whether gene therapies, in particular, would qualify. Luckily, the FDA clarified this point. As the RMAT guidance document notes: gene therapies, including genetically modified cells, that lead to a durable modification of cells or tissues may meet the definition of a regenerative medicine therapy. Additionally, a combination product (biologic-device, biologic-drug, or biologic-device-drug) can be eligible for RMAT designation when the biological product component provides the greatest contribution to the overall intended therapeutic effects of the combination product. This is an excellent development and one that portends immense benefits for future gene therapy applications submitted for FDA approval. According to the guidance, the new RMAT designation, unlike other fast-track approval and review processes, “does not require evidence to indicate that the drug may offer a substantial improvement over available therapies.” Liberalizing the threshold standards of evidence for RMAT designation ensures that future gene therapies will encounter fewer unnecessary roadblocks in delivering more effective and innovative treatments for individuals suffering from debilitating diseases. As we note in our concluding remarks: Overall, we consider the RMAT guidance to be a stellar improvement over other expedited programs, especially in its qualifying criteria. However, greater clarity is needed in order to capture the benefits of more advanced cell therapies that can help contribute to the healthy aging and well-being of American citizens. As FDA Commissioner Scott Gottlieb recently noted: “The benefits of [gene therapy] science—and the products that become available—are likely to accelerate. How we define the modern framework for safely advancing these opportunities will determine whether we’re able to fully realize the benefits that these new technologies can offer.” We agree wholeheartedly. Developing a regulatory framework that accommodates safety and innovation will be a key determinant of how quickly the benefits of regenerative medicine, gene therapy, and anti-aging research revolutionize the lives of Americans. This guidance is an important and promising step in the right direction. With the right modifications, it can help usher in a new age of healthcare improvement for individuals from all walks of life.

You can also read and download the full comments submitted to the FDA here.

Dentists May Soon Regenerate Teeth Using GSK3 Antagonists

What if I told you that we could regenerate our teeth? Well, that may soon be a possibility thanks to new research showing that teeth can be encouraged to regrow. Rather than drilling holes into teeth and plugging them with artificial fillers, dentists in the near future may be able to rebuild your teeth with a new technique.

Stimulating stem cells

Professor Paul Sharpe, a scientist based at King’s College in London, and his team have found a way to do just this in mice. They published a study last year that described this new approach[1].

The researchers wanted to increase the natural ability of teeth to repair themselves by activating the stem cells that reside in the dental pulp of teeth. They knew that previous research showed that the wnt signaling pathway is a key pathway for stem cell activity in many parts of the body, and they wanted to see if it works the same way in teeth.

The researchers believed by that using drugs to stimulate the wnt pathway, they could increase stem cell activity in teeth and boost their regenerative potential significantly. Normally, this level of regeneration is only seen in animals like starfish and salamanders, but the researchers wanted to see if we can benefit from the same regenerative capacity.

To see if this would work, the team drilled holes into the molar teeth of mice to simulate dental cavities. Next, they exposed collagen sponges (the same protein found in the dentin in teeth) to a variety of drugs known to stimulate the wnt pathway. Then, they placed these sponges into the cavities and sealed them in for between 4 to 6 weeks.

After this time, the researchers saw that the teeth exposed to these sponges had created a lot more dentin than the control mice and mice given typical dental fillers. The researchers observed that this was essentially a full repair and, in most cases, the teeth of the mice were as good as new.

The next step towards clinical trials

Since then, the researchers have tested the technique on rats, which have considerably larger teeth than mice, making them the logical next step. The research team report that the therapy worked equally well on the rats as it did in the mice in the original study; however, the data is yet to be published.

The researchers are now screening their drug candidates to identify the most effective of the wnt-stimulating drugs. They are also adapting the technique to work with modern dental practices by injecting a gel containing the drug into a dental cavity and hardening it using a UV light to seal it in. This is similar to how dentists currently seal and repair teeth, so this technique would be easy to incorporate into dental practice.

Literature

It will be several years before this enters human clinical trials, but the results so far are promising, and the process may be quicker than normal because a number of the candidate drugs are already approved for human use. The arrival of this technique will revolutionize dentistry and is a great step forward for regenerative medicine in general.

Such techniques have the potential to translate to other tissues to help encourage regeneration, so it is also relevant to aging research. We look forward to more developments from this team in the future.

References

[1] Neves, V. C., Babb, R., Chandrasekaran, D., & Sharpe, P. T. (2017). Promotion of natural tooth repair by small molecule GSK3 antagonists. Scientific reports, 7, 39654.