Help us: Donate
Follow us on:

Using Direct Conversion of Cells to Investigate the Behavior of Aging Tissues

Using Direct Conversion of Cells to Investigate the Behavior of Aging Tissues

The process of reprogramming used to produce induced pluripotent stem cells erases many of the marks of aging in cells taken from old tissues, such as epigenetic changes and declining mitochondrial function. This may prove to be the basis for therapies based on reprogramming, but it is also very inconvenient for researchers who want to study how old cells and tissues behave in detail. Thus scientists here use a process of direct conversion, programming one cell type to become another without inducing a stem cell state, in order to retain the features of old tissue. That allows the identification of differences between old and young cellular metabolism, and run initial tests of potential interventions in cell cultures.

reprogramminginduced pluripotent stem cellsepigenetic changesdeclining mitochondrial functiontherapies based on reprogrammingdirect conversionstem cell

Research into aging vasculature has been hampered by the fact that collecting blood vessel cells from patients is invasive, but when blood vessel cells are created from special stem cells called induced pluripotent stem cells, age-related molecular changes are wiped clean. In 2015, however, researchers showed that fibroblasts could be directly reprogrammed into neurons, skipping the induced pluripotent stem cell stage that erased the cells’ aging signatures. The resulting


Article originally posted at

Click here for the full story